Search Results (397 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-20957 1 Microsoft 11 365 Apps, Excel, Excel 2016 and 8 more 2026-01-16 7.8 High
Integer underflow (wrap or wraparound) in Microsoft Office Excel allows an unauthorized attacker to execute code locally.
CVE-2025-62291 1 Strongswan 1 Strongswan 2026-01-16 8.1 High
In the eap-mschapv2 plugin (client-side) in strongSwan before 6.0.3, a malicious EAP-MSCHAPv2 server can send a crafted message of size 6 through 8, and cause an integer underflow that potentially results in a heap-based buffer overflow.
CVE-2026-21489 2 Color, Internationalcolorconsortium 2 Iccdev, Iccdev 2026-01-14 6.1 Medium
iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1.1 and below have Out-of-bounds Read and Integer Underflow (Wrap or Wraparound) vulnerabilities in its CIccCalculatorFunc::SequenceNeedTempReset function. This issue is fixed in version 2.3.1.2.
CVE-2026-22185 1 Openldap 1 Openldap 2026-01-14 6.8 Medium
OpenLDAP Lightning Memory-Mapped Database (LMDB) versions up to and including 0.9.14, prior to commit 8e1fda8, contain a heap buffer underflow in the readline() function of mdb_load. When processing malformed input containing an embedded NUL byte, an unsigned offset calculation can underflow and cause an out-of-bounds read of one byte before the allocated heap buffer. This can cause mdb_load to crash, leading to a limited denial-of-service condition.
CVE-2025-39928 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i2c: rtl9300: ensure data length is within supported range Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer' to ensure the data length isn't within the supported range. In particular a data length of 0 is not supported by the hardware and causes unintended or destructive behaviour. This limitation becomes obvious when looking at the register documentation [1]. 4 bits are reserved for DATA_WIDTH and the value of these 4 bits is used as N + 1, allowing a data length range of 1 <= len <= 16. Affected by this is the SMBus Quick Operation which works with a data length of 0. Passing 0 as the length causes an underflow of the value due to: (len - 1) & 0xf and effectively specifying a transfer length of 16 via the registers. This causes a 16-byte write operation instead of a Quick Write. For example, on SFP modules without write-protected EEPROM this soft-bricks them by overwriting some initial bytes. For completeness, also add a quirk for the zero length. [1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2
CVE-2023-53258 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix possible underflow for displays with large vblank [Why] Underflow observed when using a display with a large vblank region and low refresh rate [How] Simplify calculation of vblank_nom Increase value for VBlankNomDefaultUS to 800us
CVE-2023-53226 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Fix OOB and integer underflow when rx packets Make sure mwifiex_process_mgmt_packet, mwifiex_process_sta_rx_packet and mwifiex_process_uap_rx_packet, mwifiex_uap_queue_bridged_pkt and mwifiex_process_rx_packet not out-of-bounds access the skb->data buffer.
CVE-2021-31956 1 Microsoft 22 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 19 more 2026-01-13 7.8 High
Windows NTFS Elevation of Privilege Vulnerability
CVE-2025-67269 1 Gpsd Project 1 Gpsd 2026-01-09 7.5 High
An integer underflow vulnerability exists in the `nextstate()` function in `gpsd/packet.c` of gpsd versions prior to commit `ffa1d6f40bca0b035fc7f5e563160ebb67199da7`. When parsing a NAVCOM packet, the payload length is calculated using `lexer->length = (size_t)c - 4` without checking if the input byte `c` is less than 4. This results in an unsigned integer underflow, setting `lexer->length` to a very large value (near `SIZE_MAX`). The parser then enters a loop attempting to consume this massive number of bytes, causing 100% CPU utilization and a Denial of Service (DoS) condition.
CVE-2025-10933 1 Silabs 1 Z-wave Protocol Controller 2026-01-08 N/A
An integer underflow vulnerability in the Silicon Labs Z-Wave Protocol Controller can lead to out of bounds memory reads.
CVE-2025-62567 1 Microsoft 20 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 17 more 2026-01-07 5.3 Medium
Integer underflow (wrap or wraparound) in Windows Hyper-V allows an authorized attacker to deny service over a network.
CVE-2024-57843 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: virtio-net: fix overflow inside virtnet_rq_alloc When the frag just got a page, then may lead to regression on VM. Specially if the sysctl net.core.high_order_alloc_disable value is 1, then the frag always get a page when do refill. Which could see reliable crashes or scp failure (scp a file 100M in size to VM). The issue is that the virtnet_rq_dma takes up 16 bytes at the beginning of a new frag. When the frag size is larger than PAGE_SIZE, everything is fine. However, if the frag is only one page and the total size of the buffer and virtnet_rq_dma is larger than one page, an overflow may occur. The commit f9dac92ba908 ("virtio_ring: enable premapped mode whatever use_dma_api") introduced this problem. And we reverted some commits to fix this in last linux version. Now we try to enable it and fix this bug directly. Here, when the frag size is not enough, we reduce the buffer len to fix this problem.
CVE-2024-46759 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: hwmon: (adc128d818) Fix underflows seen when writing limit attributes DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large negative number such as -9223372036854775808 is provided by the user. Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations.
CVE-2023-52705 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix underflow in second superblock position calculations Macro NILFS_SB2_OFFSET_BYTES, which computes the position of the second superblock, underflows when the argument device size is less than 4096 bytes. Therefore, when using this macro, it is necessary to check in advance that the device size is not less than a lower limit, or at least that underflow does not occur. The current nilfs2 implementation lacks this check, causing out-of-bound block access when mounting devices smaller than 4096 bytes: I/O error, dev loop0, sector 36028797018963960 op 0x0:(READ) flags 0x0 phys_seg 1 prio class 2 NILFS (loop0): unable to read secondary superblock (blocksize = 1024) In addition, when trying to resize the filesystem to a size below 4096 bytes, this underflow occurs in nilfs_resize_fs(), passing a huge number of segments to nilfs_sufile_resize(), corrupting parameters such as the number of segments in superblocks. This causes excessive loop iterations in nilfs_sufile_resize() during a subsequent resize ioctl, causing semaphore ns_segctor_sem to block for a long time and hang the writer thread: INFO: task segctord:5067 blocked for more than 143 seconds. Not tainted 6.2.0-rc8-syzkaller-00015-gf6feea56f66d #0 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:segctord state:D stack:23456 pid:5067 ppid:2 flags:0x00004000 Call Trace: <TASK> context_switch kernel/sched/core.c:5293 [inline] __schedule+0x1409/0x43f0 kernel/sched/core.c:6606 schedule+0xc3/0x190 kernel/sched/core.c:6682 rwsem_down_write_slowpath+0xfcf/0x14a0 kernel/locking/rwsem.c:1190 nilfs_transaction_lock+0x25c/0x4f0 fs/nilfs2/segment.c:357 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2486 [inline] nilfs_segctor_thread+0x52f/0x1140 fs/nilfs2/segment.c:2570 kthread+0x270/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> ... Call Trace: <TASK> folio_mark_accessed+0x51c/0xf00 mm/swap.c:515 __nilfs_get_page_block fs/nilfs2/page.c:42 [inline] nilfs_grab_buffer+0x3d3/0x540 fs/nilfs2/page.c:61 nilfs_mdt_submit_block+0xd7/0x8f0 fs/nilfs2/mdt.c:121 nilfs_mdt_read_block+0xeb/0x430 fs/nilfs2/mdt.c:176 nilfs_mdt_get_block+0x12d/0xbb0 fs/nilfs2/mdt.c:251 nilfs_sufile_get_segment_usage_block fs/nilfs2/sufile.c:92 [inline] nilfs_sufile_truncate_range fs/nilfs2/sufile.c:679 [inline] nilfs_sufile_resize+0x7a3/0x12b0 fs/nilfs2/sufile.c:777 nilfs_resize_fs+0x20c/0xed0 fs/nilfs2/super.c:422 nilfs_ioctl_resize fs/nilfs2/ioctl.c:1033 [inline] nilfs_ioctl+0x137c/0x2440 fs/nilfs2/ioctl.c:1301 ... This fixes these issues by inserting appropriate minimum device size checks or anti-underflow checks, depending on where the macro is used.
CVE-2025-59242 1 Microsoft 26 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 23 more 2026-01-02 7.8 High
Heap-based buffer overflow in Windows Ancillary Function Driver for WinSock allows an authorized attacker to elevate privileges locally.
CVE-2025-64076 1 Agronholm 1 Cbor2 2025-12-31 7.5 High
Multiple vulnerabilities exist in cbor2 through version 5.7.0 in the decode_definite_long_string() function of the C extension decoder (source/decoder.c): (1) Integer Underflow Leading to Out-of-Bounds Read (CWE-191, CWE-125): An incorrect variable reference and missing state reset in the chunk processing loop causes buffer_length to not be reset to zero after UTF-8 character consumption. This results in subsequent chunk_length calculations producing negative values (e.g., chunk_length = 65536 - buffer_length), which are passed as signed integers to the read() method, potentially triggering unlimited read operations and resource exhaustion. (2) Memory Leak via Missing Reference Count Release (CWE-401): The main processing loop fails to release Python object references (Py_DECREF) for chunk objects allocated in each iteration. For CBOR strings longer than 65536 bytes, this causes cumulative memory leaks proportional to the payload size, enabling memory exhaustion attacks through repeated processing of large CBOR payloads. Both vulnerabilities can be exploited remotely without authentication by sending specially-crafted CBOR data containing definite-length text strings with multi-byte UTF-8 characters positioned at 65536-byte chunk boundaries. Successful exploitation results in denial of service through process crashes (CBORDecodeEOF exceptions) or memory exhaustion. The vulnerabilities affect all applications using cbor2's C extension to process untrusted CBOR data, including web APIs, IoT data collectors, and message queue processors. Fixed in commit 851473490281f82d82560b2368284ef33cf6e8f9 pushed with released version 5.7.1.
CVE-2025-66217 2 Ais-catcher Project, Aiscatcher 2 Ais-catcher, Ais-catcher 2025-12-23 7.5 High
AIS-catcher is a multi-platform AIS receiver. Prior to version 0.64, an integer underflow vulnerability exists in the MQTT parsing logic of AIS-catcher. This vulnerability allows an attacker to trigger a massive Heap Buffer Overflow by sending a malformed MQTT packet with a manipulated Topic Length field. This leads to an immediate Denial of Service (DoS) and, when used as a library, severe Memory Corruption that can be leveraged for Remote Code Execution (RCE). This issue has been patched in version 0.64.
CVE-2022-49280 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSD: prevent underflow in nfssvc_decode_writeargs() Smatch complains: fs/nfsd/nfsxdr.c:341 nfssvc_decode_writeargs() warn: no lower bound on 'args->len' Change the type to unsigned to prevent this issue.
CVE-2022-49564 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - add param check for DH Reject requests with a source buffer that is bigger than the size of the key. This is to prevent a possible integer underflow that might happen when copying the source scatterlist into a linear buffer.
CVE-2022-48828 2 Linux, Redhat 4 Linux Kernel, Rhel Aus, Rhel E4s and 1 more 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSD: Fix ia_size underflow iattr::ia_size is a loff_t, which is a signed 64-bit type. NFSv3 and NFSv4 both define file size as an unsigned 64-bit type. Thus there is a range of valid file size values an NFS client can send that is already larger than Linux can handle. Currently decode_fattr4() dumps a full u64 value into ia_size. If that value happens to be larger than S64_MAX, then ia_size underflows. I'm about to fix up the NFSv3 behavior as well, so let's catch the underflow in the common code path: nfsd_setattr().