| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Management Services allows an authorized attacker to elevate privileges locally. |
| Double free in Windows Win32K - ICOMP allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Management Services allows an authorized attacker to elevate privileges locally. |
| Windows Remote Procedure Call Interface Definition Language (IDL) Elevation of Privilege Vulnerability |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Detect events pointing to unexpected TREs
When a remote device sends a completion event to the host, it contains a
pointer to the consumed TRE. The host uses this pointer to process all of
the TREs between it and the host's local copy of the ring's read pointer.
This works when processing completion for chained transactions, but can
lead to nasty results if the device sends an event for a single-element
transaction with a read pointer that is multiple elements ahead of the
host's read pointer.
For instance, if the host accesses an event ring while the device is
updating it, the pointer inside of the event might still point to an old
TRE. If the host uses the channel's xfer_cb() to directly free the buffer
pointed to by the TRE, the buffer will be double-freed.
This behavior was observed on an ep that used upstream EP stack without
'commit 6f18d174b73d ("bus: mhi: ep: Update read pointer only after buffer
is written")'. Where the device updated the events ring pointer before
updating the event contents, so it left a window where the host was able to
access the stale data the event pointed to, before the device had the
chance to update them. The usual pattern was that the host received an
event pointing to a TRE that is not immediately after the last processed
one, so it got treated as if it was a chained transaction, processing all
of the TREs in between the two read pointers.
This commit aims to harden the host by ensuring transactions where the
event points to a TRE that isn't local_rp + 1 are chained.
[mani: added stable tag and reworded commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Silence warning when chunk allocation fails in trace_pid_write
Syzkaller trigger a fault injection warning:
WARNING: CPU: 1 PID: 12326 at tracepoint_add_func+0xbfc/0xeb0
Modules linked in:
CPU: 1 UID: 0 PID: 12326 Comm: syz.6.10325 Tainted: G U 6.14.0-rc5-syzkaller #0
Tainted: [U]=USER
Hardware name: Google Compute Engine/Google Compute Engine
RIP: 0010:tracepoint_add_func+0xbfc/0xeb0 kernel/tracepoint.c:294
Code: 09 fe ff 90 0f 0b 90 0f b6 74 24 43 31 ff 41 bc ea ff ff ff
RSP: 0018:ffffc9000414fb48 EFLAGS: 00010283
RAX: 00000000000012a1 RBX: ffffffff8e240ae0 RCX: ffffc90014b78000
RDX: 0000000000080000 RSI: ffffffff81bbd78b RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffffffffef
R13: 0000000000000000 R14: dffffc0000000000 R15: ffffffff81c264f0
FS: 00007f27217f66c0(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2e80dff8 CR3: 00000000268f8000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tracepoint_probe_register_prio+0xc0/0x110 kernel/tracepoint.c:464
register_trace_prio_sched_switch include/trace/events/sched.h:222 [inline]
register_pid_events kernel/trace/trace_events.c:2354 [inline]
event_pid_write.isra.0+0x439/0x7a0 kernel/trace/trace_events.c:2425
vfs_write+0x24c/0x1150 fs/read_write.c:677
ksys_write+0x12b/0x250 fs/read_write.c:731
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
We can reproduce the warning by following the steps below:
1. echo 8 >> set_event_notrace_pid. Let tr->filtered_pids owns one pid
and register sched_switch tracepoint.
2. echo ' ' >> set_event_pid, and perform fault injection during chunk
allocation of trace_pid_list_alloc. Let pid_list with no pid and
assign to tr->filtered_pids.
3. echo ' ' >> set_event_pid. Let pid_list is NULL and assign to
tr->filtered_pids.
4. echo 9 >> set_event_pid, will trigger the double register
sched_switch tracepoint warning.
The reason is that syzkaller injects a fault into the chunk allocation
in trace_pid_list_alloc, causing a failure in trace_pid_list_set, which
may trigger double register of the same tracepoint. This only occurs
when the system is about to crash, but to suppress this warning, let's
add failure handling logic to trace_pid_list_set. |
| A Double Free vulnerability in the flow processing daemon (flowd) of Juniper Networks Junos OS on SRX and MX Series allows an unauthenticated, network-based attacker to cause a Denial-of-Service (DoS). On all SRX and MX Series platforms, when during TCP session establishment a specific sequence of packets is encountered a double free happens. This causes flowd to crash and the respective FPC to restart.
This issue affects Junos OS on SRX and MX Series:
* all versions before 22.4R3-S7,
* 23.2 versions before 23.2R2-S3,
* 23.4 versions before 23.4R2-S4,
* 24.2 versions before 24.2R2. |
| CWE-415: Double Free vulnerability exists that could cause heap memory corruption when the end user imports a malicious project file (SSD file) shared by the attacker into Rapsody. |
| A vulnerability has been identified in the libarchive library, specifically within the archive_read_format_rar_seek_data() function. This flaw involves an integer overflow that can ultimately lead to a double-free condition. Exploiting a double-free vulnerability can result in memory corruption, enabling an attacker to execute arbitrary code or cause a denial-of-service condition. |
| Double free vulnerability in the multi-mode input module.
Impact: Successful exploitation of this vulnerability may affect the input function. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sysfs: Fix attempting to call device_add multiple times
device_add shall not be called multiple times as stated in its
documentation:
'Do not call this routine or device_register() more than once for
any device structure'
Syzkaller reports a bug as follows [1]:
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:33!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[...]
Call Trace:
<TASK>
__list_add include/linux/list.h:69 [inline]
list_add_tail include/linux/list.h:102 [inline]
kobj_kset_join lib/kobject.c:164 [inline]
kobject_add_internal+0x18f/0x8f0 lib/kobject.c:214
kobject_add_varg lib/kobject.c:358 [inline]
kobject_add+0x150/0x1c0 lib/kobject.c:410
device_add+0x368/0x1e90 drivers/base/core.c:3452
hci_conn_add_sysfs+0x9b/0x1b0 net/bluetooth/hci_sysfs.c:53
hci_le_cis_estabilished_evt+0x57c/0xae0 net/bluetooth/hci_event.c:6799
hci_le_meta_evt+0x2b8/0x510 net/bluetooth/hci_event.c:7110
hci_event_func net/bluetooth/hci_event.c:7440 [inline]
hci_event_packet+0x63d/0xfd0 net/bluetooth/hci_event.c:7495
hci_rx_work+0xae7/0x1230 net/bluetooth/hci_core.c:4007
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure
On error situation `clp->cl_cb_conn.cb_xprt` should not be given
a reference to the xprt otherwise both client cleanup and the
error handling path of the caller call to put it. Better to
delay handing over the reference to a later branch.
[ 72.530665] refcount_t: underflow; use-after-free.
[ 72.531933] WARNING: CPU: 0 PID: 173 at lib/refcount.c:28 refcount_warn_saturate+0xcf/0x120
[ 72.533075] Modules linked in: nfsd(OE) nfsv4(OE) nfsv3(OE) nfs(OE) lockd(OE) compat_nfs_ssc(OE) nfs_acl(OE) rpcsec_gss_krb5(OE) auth_rpcgss(OE) rpcrdma(OE) dns_resolver fscache netfs grace rdma_cm iw_cm ib_cm sunrpc(OE) mlx5_ib mlx5_core mlxfw pci_hyperv_intf ib_uverbs ib_core xt_MASQUERADE nf_conntrack_netlink nft_counter xt_addrtype nft_compat br_netfilter bridge stp llc nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set overlay nf_tables nfnetlink crct10dif_pclmul crc32_pclmul ghash_clmulni_intel xfs serio_raw virtio_net virtio_blk net_failover failover fuse [last unloaded: sunrpc]
[ 72.540389] CPU: 0 PID: 173 Comm: kworker/u16:5 Tainted: G OE 5.15.82-dan #1
[ 72.541511] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+1084+97b81f61 04/01/2014
[ 72.542717] Workqueue: nfsd4_callbacks nfsd4_run_cb_work [nfsd]
[ 72.543575] RIP: 0010:refcount_warn_saturate+0xcf/0x120
[ 72.544299] Code: 55 00 0f 0b 5d e9 01 50 98 00 80 3d 75 9e 39 08 00 0f 85 74 ff ff ff 48 c7 c7 e8 d1 60 8e c6 05 61 9e 39 08 01 e8 f6 51 55 00 <0f> 0b 5d e9 d9 4f 98 00 80 3d 4b 9e 39 08 00 0f 85 4c ff ff ff 48
[ 72.546666] RSP: 0018:ffffb3f841157cf0 EFLAGS: 00010286
[ 72.547393] RAX: 0000000000000026 RBX: ffff89ac6231d478 RCX: 0000000000000000
[ 72.548324] RDX: ffff89adb7c2c2c0 RSI: ffff89adb7c205c0 RDI: ffff89adb7c205c0
[ 72.549271] RBP: ffffb3f841157cf0 R08: 0000000000000000 R09: c0000000ffefffff
[ 72.550209] R10: 0000000000000001 R11: ffffb3f841157ad0 R12: ffff89ac6231d180
[ 72.551142] R13: ffff89ac6231d478 R14: ffff89ac40c06180 R15: ffff89ac6231d4b0
[ 72.552089] FS: 0000000000000000(0000) GS:ffff89adb7c00000(0000) knlGS:0000000000000000
[ 72.553175] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 72.553934] CR2: 0000563a310506a8 CR3: 0000000109a66000 CR4: 0000000000350ef0
[ 72.554874] Call Trace:
[ 72.555278] <TASK>
[ 72.555614] svc_xprt_put+0xaf/0xe0 [sunrpc]
[ 72.556276] nfsd4_process_cb_update.isra.11+0xb7/0x410 [nfsd]
[ 72.557087] ? update_load_avg+0x82/0x610
[ 72.557652] ? cpuacct_charge+0x60/0x70
[ 72.558212] ? dequeue_entity+0xdb/0x3e0
[ 72.558765] ? queued_spin_unlock+0x9/0x20
[ 72.559358] nfsd4_run_cb_work+0xfc/0x270 [nfsd]
[ 72.560031] process_one_work+0x1df/0x390
[ 72.560600] worker_thread+0x37/0x3b0
[ 72.561644] ? process_one_work+0x390/0x390
[ 72.562247] kthread+0x12f/0x150
[ 72.562710] ? set_kthread_struct+0x50/0x50
[ 72.563309] ret_from_fork+0x22/0x30
[ 72.563818] </TASK>
[ 72.564189] ---[ end trace 031117b1c72ec616 ]---
[ 72.566019] list_add corruption. next->prev should be prev (ffff89ac4977e538), but was ffff89ac4763e018. (next=ffff89ac4763e018).
[ 72.567647] ------------[ cut here ]------------ |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: Rework scratch handling for READ_PLUS (again)
I found that the read code might send multiple requests using the same
nfs_pgio_header, but nfs4_proc_read_setup() is only called once. This is
how we ended up occasionally double-freeing the scratch buffer, but also
means we set a NULL pointer but non-zero length to the xdr scratch
buffer. This results in an oops the first time decoding needs to copy
something to scratch, which frequently happens when decoding READ_PLUS
hole segments.
I fix this by moving scratch handling into the pageio read code. I
provide a function to allocate scratch space for decoding read replies,
and free the scratch buffer when the nfs_pgio_header is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fec: Better handle pm_runtime_get() failing in .remove()
In the (unlikely) event that pm_runtime_get() (disguised as
pm_runtime_resume_and_get()) fails, the remove callback returned an
error early. The problem with this is that the driver core ignores the
error value and continues removing the device. This results in a
resource leak. Worse the devm allocated resources are freed and so if a
callback of the driver is called later the register mapping is already
gone which probably results in a crash. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |
| A double free vulnerability [CWE-415] vulnerability in Fortinet FortiOS 7.4.0, FortiOS 7.2.0 through 7.2.5, FortiOS 7.0.0 through 7.0.12, FortiOS 6.4 all versions, FortiPAM 1.1 all versions, FortiPAM 1.0 all versions, FortiProxy 7.4.0 through 7.4.1, FortiProxy 7.2.0 through 7.2.7, FortiProxy 7.0.0 through 7.0.13 allows a privileged attacker to execute code or commands via crafted HTTP or HTTPs requests. |
| A double free vulnerability [CWE-415] vulnerability in Fortinet FortiOS 6.4 all versions may allow a privileged attacker to execute code or commands via crafted HTTP or HTTPs requests. |
| Espressif ESP-IDF USB Host HID (Human Interface Device) Driver allows access to HID devices. Prior to 1.1.0, calls to hid_host_device_close() can free the same usb_transfer_t twice. The USB event callback and user code share the hid_iface_t state without locking, so both can tear down a READY interface simultaneously, corrupting heap metadata inside the ESP USB host stack. This vulnerability is fixed in 1.1.0. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to 7.1.2-9 and 6.9.13-34, there is a vulnerability in ImageMagick’s Magick++ layer that manifests when Options::fontFamily is invoked with an empty string. Clearing a font family calls RelinquishMagickMemory on _drawInfo->font, freeing the font string but leaving _drawInfo->font pointing to freed memory while _drawInfo->family is set to that (now-invalid) pointer. Any later cleanup or reuse of _drawInfo->font re-frees or dereferences dangling memory. DestroyDrawInfo and other setters (Options::font, Image::font) assume _drawInfo->font remains valid, so destruction or subsequent updates trigger crashes or heap corruption. This vulnerability is fixed in 7.1.2-9 and 6.9.13-34. |
| Memory corruption occurs when a secure application is launched on a device with insufficient memory. |