| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
iscsi_ibft: Fix UBSAN shift-out-of-bounds warning in ibft_attr_show_nic()
When performing an iSCSI boot using IPv6, iscsistart still reads the
/sys/firmware/ibft/ethernetX/subnet-mask entry. Since the IPv6 prefix
length is 64, this causes the shift exponent to become negative,
triggering a UBSAN warning. As the concept of a subnet mask does not
apply to IPv6, the value is set to ~0 to suppress the warning message. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix slab-use-after-free Read in l2cap_send_cmd
After the hci sync command releases l2cap_conn, the hci receive data work
queue references the released l2cap_conn when sending to the upper layer.
Add hci dev lock to the hci receive data work queue to synchronize the two.
[1]
BUG: KASAN: slab-use-after-free in l2cap_send_cmd+0x187/0x8d0 net/bluetooth/l2cap_core.c:954
Read of size 8 at addr ffff8880271a4000 by task kworker/u9:2/5837
CPU: 0 UID: 0 PID: 5837 Comm: kworker/u9:2 Not tainted 6.13.0-rc5-syzkaller-00163-gab75170520d4 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: hci1 hci_rx_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
l2cap_build_cmd net/bluetooth/l2cap_core.c:2964 [inline]
l2cap_send_cmd+0x187/0x8d0 net/bluetooth/l2cap_core.c:954
l2cap_sig_send_rej net/bluetooth/l2cap_core.c:5502 [inline]
l2cap_sig_channel net/bluetooth/l2cap_core.c:5538 [inline]
l2cap_recv_frame+0x221f/0x10db0 net/bluetooth/l2cap_core.c:6817
hci_acldata_packet net/bluetooth/hci_core.c:3797 [inline]
hci_rx_work+0x508/0xdb0 net/bluetooth/hci_core.c:4040
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 5837:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329
kmalloc_noprof include/linux/slab.h:901 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
l2cap_conn_add+0xa9/0x8e0 net/bluetooth/l2cap_core.c:6860
l2cap_connect_cfm+0x115/0x1090 net/bluetooth/l2cap_core.c:7239
hci_connect_cfm include/net/bluetooth/hci_core.h:2057 [inline]
hci_remote_features_evt+0x68e/0xac0 net/bluetooth/hci_event.c:3726
hci_event_func net/bluetooth/hci_event.c:7473 [inline]
hci_event_packet+0xac2/0x1540 net/bluetooth/hci_event.c:7525
hci_rx_work+0x3f3/0xdb0 net/bluetooth/hci_core.c:4035
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 54:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2353 [inline]
slab_free mm/slub.c:4613 [inline]
kfree+0x196/0x430 mm/slub.c:4761
l2cap_connect_cfm+0xcc/0x1090 net/bluetooth/l2cap_core.c:7235
hci_connect_cfm include/net/bluetooth/hci_core.h:2057 [inline]
hci_conn_failed+0x287/0x400 net/bluetooth/hci_conn.c:1266
hci_abort_conn_sync+0x56c/0x11f0 net/bluetooth/hci_sync.c:5603
hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix a suspicious RCU usage warning
I received the following warning while running cthon against an ontap
server running pNFS:
[ 57.202521] =============================
[ 57.202522] WARNING: suspicious RCU usage
[ 57.202523] 6.7.0-rc3-g2cc14f52aeb7 #41492 Not tainted
[ 57.202525] -----------------------------
[ 57.202525] net/sunrpc/xprtmultipath.c:349 RCU-list traversed in non-reader section!!
[ 57.202527]
other info that might help us debug this:
[ 57.202528]
rcu_scheduler_active = 2, debug_locks = 1
[ 57.202529] no locks held by test5/3567.
[ 57.202530]
stack backtrace:
[ 57.202532] CPU: 0 PID: 3567 Comm: test5 Not tainted 6.7.0-rc3-g2cc14f52aeb7 #41492 5b09971b4965c0aceba19f3eea324a4a806e227e
[ 57.202534] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022
[ 57.202536] Call Trace:
[ 57.202537] <TASK>
[ 57.202540] dump_stack_lvl+0x77/0xb0
[ 57.202551] lockdep_rcu_suspicious+0x154/0x1a0
[ 57.202556] rpc_xprt_switch_has_addr+0x17c/0x190 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202596] rpc_clnt_setup_test_and_add_xprt+0x50/0x180 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202621] ? rpc_clnt_add_xprt+0x254/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202646] rpc_clnt_add_xprt+0x27a/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202671] ? __pfx_rpc_clnt_setup_test_and_add_xprt+0x10/0x10 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202696] nfs4_pnfs_ds_connect+0x345/0x760 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202728] ? __pfx_nfs4_test_session_trunk+0x10/0x10 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202754] nfs4_fl_prepare_ds+0x75/0xc0 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a]
[ 57.202760] filelayout_write_pagelist+0x4a/0x200 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a]
[ 57.202765] pnfs_generic_pg_writepages+0xbe/0x230 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202788] __nfs_pageio_add_request+0x3fd/0x520 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202813] nfs_pageio_add_request+0x18b/0x390 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202831] nfs_do_writepage+0x116/0x1e0 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202849] nfs_writepages_callback+0x13/0x30 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202866] write_cache_pages+0x265/0x450
[ 57.202870] ? __pfx_nfs_writepages_callback+0x10/0x10 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202891] nfs_writepages+0x141/0x230 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202913] do_writepages+0xd2/0x230
[ 57.202917] ? filemap_fdatawrite_wbc+0x5c/0x80
[ 57.202921] filemap_fdatawrite_wbc+0x67/0x80
[ 57.202924] filemap_write_and_wait_range+0xd9/0x170
[ 57.202930] nfs_wb_all+0x49/0x180 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202947] nfs4_file_flush+0x72/0xb0 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202969] __se_sys_close+0x46/0xd0
[ 57.202972] do_syscall_64+0x68/0x100
[ 57.202975] ? do_syscall_64+0x77/0x100
[ 57.202976] ? do_syscall_64+0x77/0x100
[ 57.202979] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 57.202982] RIP: 0033:0x7fe2b12e4a94
[ 57.202985] Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 18 0e 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 44 c3 0f 1f 00 48 83 ec 18 89 7c 24 0c e8 c3
[ 57.202987] RSP: 002b:00007ffe857ddb38 EFLAGS: 00000202 ORIG_RAX: 0000000000000003
[ 57.202989] RAX: ffffffffffffffda RBX: 00007ffe857dfd68 RCX: 00007fe2b12e4a94
[ 57.202991] RDX: 0000000000002000 RSI: 00007ffe857ddc40 RDI: 0000000000000003
[ 57.202992] RBP: 00007ffe857dfc50 R08: 7fffffffffffffff R09: 0000000065650f49
[ 57.202993] R10: 00007f
---truncated--- |
| A heap out-of-bounds write affecting Linux since v2.6.19-rc1 was discovered in net/netfilter/x_tables.c. This allows an attacker to gain privileges or cause a DoS (via heap memory corruption) through user name space |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: pm: Fix uaf in __timer_delete_sync
There are two paths to access mptcp_pm_del_add_timer, result in a race
condition:
CPU1 CPU2
==== ====
net_rx_action
napi_poll netlink_sendmsg
__napi_poll netlink_unicast
process_backlog netlink_unicast_kernel
__netif_receive_skb genl_rcv
__netif_receive_skb_one_core netlink_rcv_skb
NF_HOOK genl_rcv_msg
ip_local_deliver_finish genl_family_rcv_msg
ip_protocol_deliver_rcu genl_family_rcv_msg_doit
tcp_v4_rcv mptcp_pm_nl_flush_addrs_doit
tcp_v4_do_rcv mptcp_nl_remove_addrs_list
tcp_rcv_established mptcp_pm_remove_addrs_and_subflows
tcp_data_queue remove_anno_list_by_saddr
mptcp_incoming_options mptcp_pm_del_add_timer
mptcp_pm_del_add_timer kfree(entry)
In remove_anno_list_by_saddr(running on CPU2), after leaving the critical
zone protected by "pm.lock", the entry will be released, which leads to the
occurrence of uaf in the mptcp_pm_del_add_timer(running on CPU1).
Keeping a reference to add_timer inside the lock, and calling
sk_stop_timer_sync() with this reference, instead of "entry->add_timer".
Move list_del(&entry->list) to mptcp_pm_del_add_timer and inside the pm lock,
do not directly access any members of the entry outside the pm lock, which
can avoid similar "entry->x" uaf. |
| In the Linux kernel, the following vulnerability has been resolved:
eeprom: at24: fix memory corruption race condition
If the eeprom is not accessible, an nvmem device will be registered, the
read will fail, and the device will be torn down. If another driver
accesses the nvmem device after the teardown, it will reference
invalid memory.
Move the failure point before registering the nvmem device. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm/pat: fix VM_PAT handling in COW mappings
PAT handling won't do the right thing in COW mappings: the first PTE (or,
in fact, all PTEs) can be replaced during write faults to point at anon
folios. Reliably recovering the correct PFN and cachemode using
follow_phys() from PTEs will not work in COW mappings.
Using follow_phys(), we might just get the address+protection of the anon
folio (which is very wrong), or fail on swap/nonswap entries, failing
follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and
track_pfn_copy(), not properly calling free_pfn_range().
In free_pfn_range(), we either wouldn't call memtype_free() or would call
it with the wrong range, possibly leaking memory.
To fix that, let's update follow_phys() to refuse returning anon folios,
and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings
if we run into that.
We will now properly handle untrack_pfn() with COW mappings, where we
don't need the cachemode. We'll have to fail fork()->track_pfn_copy() if
the first page was replaced by an anon folio, though: we'd have to store
the cachemode in the VMA to make this work, likely growing the VMA size.
For now, lets keep it simple and let track_pfn_copy() just fail in that
case: it would have failed in the past with swap/nonswap entries already,
and it would have done the wrong thing with anon folios.
Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn():
<--- C reproducer --->
#include <stdio.h>
#include <sys/mman.h>
#include <unistd.h>
#include <liburing.h>
int main(void)
{
struct io_uring_params p = {};
int ring_fd;
size_t size;
char *map;
ring_fd = io_uring_setup(1, &p);
if (ring_fd < 0) {
perror("io_uring_setup");
return 1;
}
size = p.sq_off.array + p.sq_entries * sizeof(unsigned);
/* Map the submission queue ring MAP_PRIVATE */
map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
ring_fd, IORING_OFF_SQ_RING);
if (map == MAP_FAILED) {
perror("mmap");
return 1;
}
/* We have at least one page. Let's COW it. */
*map = 0;
pause();
return 0;
}
<--- C reproducer --->
On a system with 16 GiB RAM and swap configured:
# ./iouring &
# memhog 16G
# killall iouring
[ 301.552930] ------------[ cut here ]------------
[ 301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100
[ 301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g
[ 301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1
[ 301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4
[ 301.559569] RIP: 0010:untrack_pfn+0xf4/0x100
[ 301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000
[ 301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282
[ 301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047
[ 301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200
[ 301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000
[ 301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000
[ 301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000
[ 301.564186] FS: 0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000
[ 301.564773] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0
[ 301.565725] PKRU: 55555554
[ 301.565944] Call Trace:
[ 301.566148] <TASK>
[ 301.566325] ? untrack_pfn+0xf4/0x100
[ 301.566618] ? __warn+0x81/0x130
[ 301.566876] ? untrack_pfn+0xf4/0x100
[ 3
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
udp: do not accept non-tunnel GSO skbs landing in a tunnel
When rx-udp-gro-forwarding is enabled UDP packets might be GROed when
being forwarded. If such packets might land in a tunnel this can cause
various issues and udp_gro_receive makes sure this isn't the case by
looking for a matching socket. This is performed in
udp4/6_gro_lookup_skb but only in the current netns. This is an issue
with tunneled packets when the endpoint is in another netns. In such
cases the packets will be GROed at the UDP level, which leads to various
issues later on. The same thing can happen with rx-gro-list.
We saw this with geneve packets being GROed at the UDP level. In such
case gso_size is set; later the packet goes through the geneve rx path,
the geneve header is pulled, the offset are adjusted and frag_list skbs
are not adjusted with regard to geneve. When those skbs hit
skb_fragment, it will misbehave. Different outcomes are possible
depending on what the GROed skbs look like; from corrupted packets to
kernel crashes.
One example is a BUG_ON[1] triggered in skb_segment while processing the
frag_list. Because gso_size is wrong (geneve header was pulled)
skb_segment thinks there is "geneve header size" of data in frag_list,
although it's in fact the next packet. The BUG_ON itself has nothing to
do with the issue. This is only one of the potential issues.
Looking up for a matching socket in udp_gro_receive is fragile: the
lookup could be extended to all netns (not speaking about performances)
but nothing prevents those packets from being modified in between and we
could still not find a matching socket. It's OK to keep the current
logic there as it should cover most cases but we also need to make sure
we handle tunnel packets being GROed too early.
This is done by extending the checks in udp_unexpected_gso: GSO packets
lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must
be segmented.
[1] kernel BUG at net/core/skbuff.c:4408!
RIP: 0010:skb_segment+0xd2a/0xf70
__udp_gso_segment+0xaa/0x560 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix infinite recursion in fib6_dump_done().
syzkaller reported infinite recursive calls of fib6_dump_done() during
netlink socket destruction. [1]
From the log, syzkaller sent an AF_UNSPEC RTM_GETROUTE message, and then
the response was generated. The following recvmmsg() resumed the dump
for IPv6, but the first call of inet6_dump_fib() failed at kzalloc() due
to the fault injection. [0]
12:01:34 executing program 3:
r0 = socket$nl_route(0x10, 0x3, 0x0)
sendmsg$nl_route(r0, ... snip ...)
recvmmsg(r0, ... snip ...) (fail_nth: 8)
Here, fib6_dump_done() was set to nlk_sk(sk)->cb.done, and the next call
of inet6_dump_fib() set it to nlk_sk(sk)->cb.args[3]. syzkaller stopped
receiving the response halfway through, and finally netlink_sock_destruct()
called nlk_sk(sk)->cb.done().
fib6_dump_done() calls fib6_dump_end() and nlk_sk(sk)->cb.done() if it
is still not NULL. fib6_dump_end() rewrites nlk_sk(sk)->cb.done() by
nlk_sk(sk)->cb.args[3], but it has the same function, not NULL, calling
itself recursively and hitting the stack guard page.
To avoid the issue, let's set the destructor after kzalloc().
[0]:
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 0
CPU: 1 PID: 432110 Comm: syz-executor.3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117)
should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153)
should_failslab (mm/slub.c:3733)
kmalloc_trace (mm/slub.c:3748 mm/slub.c:3827 mm/slub.c:3992)
inet6_dump_fib (./include/linux/slab.h:628 ./include/linux/slab.h:749 net/ipv6/ip6_fib.c:662)
rtnl_dump_all (net/core/rtnetlink.c:4029)
netlink_dump (net/netlink/af_netlink.c:2269)
netlink_recvmsg (net/netlink/af_netlink.c:1988)
____sys_recvmsg (net/socket.c:1046 net/socket.c:2801)
___sys_recvmsg (net/socket.c:2846)
do_recvmmsg (net/socket.c:2943)
__x64_sys_recvmmsg (net/socket.c:3041 net/socket.c:3034 net/socket.c:3034)
[1]:
BUG: TASK stack guard page was hit at 00000000f2fa9af1 (stack is 00000000b7912430..000000009a436beb)
stack guard page: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 223719 Comm: kworker/1:3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Workqueue: events netlink_sock_destruct_work
RIP: 0010:fib6_dump_done (net/ipv6/ip6_fib.c:570)
Code: 3c 24 e8 f3 e9 51 fd e9 28 fd ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 41 57 41 56 41 55 41 54 55 48 89 fd <53> 48 8d 5d 60 e8 b6 4d 07 fd 48 89 da 48 b8 00 00 00 00 00 fc ff
RSP: 0018:ffffc9000d980000 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffffffff84405990 RCX: ffffffff844059d3
RDX: ffff8881028e0000 RSI: ffffffff84405ac2 RDI: ffff88810c02f358
RBP: ffff88810c02f358 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000224 R12: 0000000000000000
R13: ffff888007c82c78 R14: ffff888007c82c68 R15: ffff888007c82c68
FS: 0000000000000000(0000) GS:ffff88811b100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc9000d97fff8 CR3: 0000000102309002 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<#DF>
</#DF>
<TASK>
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
...
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
netlink_sock_destruct (net/netlink/af_netlink.c:401)
__sk_destruct (net/core/sock.c:2177 (discriminator 2))
sk_destruct (net/core/sock.c:2224)
__sk_free (net/core/sock.c:2235)
sk_free (net/core/sock.c:2246)
process_one_work (kernel/workqueue.c:3259)
worker_thread (kernel/workqueue.c:3329 kernel/workqueue.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_skbmod: prevent kernel-infoleak
syzbot found that tcf_skbmod_dump() was copying four bytes
from kernel stack to user space [1].
The issue here is that 'struct tc_skbmod' has a four bytes hole.
We need to clear the structure before filling fields.
[1]
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x366/0x2520 lib/iov_iter.c:185
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
iterate_and_advance include/linux/iov_iter.h:271 [inline]
_copy_to_iter+0x366/0x2520 lib/iov_iter.c:185
copy_to_iter include/linux/uio.h:196 [inline]
simple_copy_to_iter net/core/datagram.c:532 [inline]
__skb_datagram_iter+0x185/0x1000 net/core/datagram.c:420
skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546
skb_copy_datagram_msg include/linux/skbuff.h:4050 [inline]
netlink_recvmsg+0x432/0x1610 net/netlink/af_netlink.c:1962
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x2c4/0x340 net/socket.c:1068
__sys_recvfrom+0x35a/0x5f0 net/socket.c:2242
__do_sys_recvfrom net/socket.c:2260 [inline]
__se_sys_recvfrom net/socket.c:2256 [inline]
__x64_sys_recvfrom+0x126/0x1d0 net/socket.c:2256
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was stored to memory at:
pskb_expand_head+0x30f/0x19d0 net/core/skbuff.c:2253
netlink_trim+0x2c2/0x330 net/netlink/af_netlink.c:1317
netlink_unicast+0x9f/0x1260 net/netlink/af_netlink.c:1351
nlmsg_unicast include/net/netlink.h:1144 [inline]
nlmsg_notify+0x21d/0x2f0 net/netlink/af_netlink.c:2610
rtnetlink_send+0x73/0x90 net/core/rtnetlink.c:741
rtnetlink_maybe_send include/linux/rtnetlink.h:17 [inline]
tcf_add_notify net/sched/act_api.c:2048 [inline]
tcf_action_add net/sched/act_api.c:2071 [inline]
tc_ctl_action+0x146e/0x19d0 net/sched/act_api.c:2119
rtnetlink_rcv_msg+0x1737/0x1900 net/core/rtnetlink.c:6595
netlink_rcv_skb+0x375/0x650 net/netlink/af_netlink.c:2559
rtnetlink_rcv+0x34/0x40 net/core/rtnetlink.c:6613
netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline]
netlink_unicast+0xf4c/0x1260 net/netlink/af_netlink.c:1361
netlink_sendmsg+0x10df/0x11f0 net/netlink/af_netlink.c:1905
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
____sys_sendmsg+0x877/0xb60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x4a0 net/socket.c:2674
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was stored to memory at:
__nla_put lib/nlattr.c:1041 [inline]
nla_put+0x1c6/0x230 lib/nlattr.c:1099
tcf_skbmod_dump+0x23f/0xc20 net/sched/act_skbmod.c:256
tcf_action_dump_old net/sched/act_api.c:1191 [inline]
tcf_action_dump_1+0x85e/0x970 net/sched/act_api.c:1227
tcf_action_dump+0x1fd/0x460 net/sched/act_api.c:1251
tca_get_fill+0x519/0x7a0 net/sched/act_api.c:1628
tcf_add_notify_msg net/sched/act_api.c:2023 [inline]
tcf_add_notify net/sched/act_api.c:2042 [inline]
tcf_action_add net/sched/act_api.c:2071 [inline]
tc_ctl_action+0x1365/0x19d0 net/sched/act_api.c:2119
rtnetlink_rcv_msg+0x1737/0x1900 net/core/rtnetlink.c:6595
netlink_rcv_skb+0x375/0x650 net/netlink/af_netli
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix not validating setsockopt user input
syzbot reported sco_sock_setsockopt() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90
net/bluetooth/sco.c:893
Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578 |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: fix vf may be used uninitialized in this function warning
To fix the regression introduced by commit 52424f974bc5, which causes
servers hang in very hard to reproduce conditions with resets races.
Using two sources for the information is the root cause.
In this function before the fix bumping v didn't mean bumping vf
pointer. But the code used this variables interchangeably, so stale vf
could point to different/not intended vf.
Remove redundant "v" variable and iterate via single VF pointer across
whole function instead to guarantee VF pointer validity. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: vgic-v2: Check for non-NULL vCPU in vgic_v2_parse_attr()
vgic_v2_parse_attr() is responsible for finding the vCPU that matches
the user-provided CPUID, which (of course) may not be valid. If the ID
is invalid, kvm_get_vcpu_by_id() returns NULL, which isn't handled
gracefully.
Similar to the GICv3 uaccess flow, check that kvm_get_vcpu_by_id()
actually returns something and fail the ioctl if not. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: avoid off-by-one read from userspace
We try to access count + 1 byte from userspace with memdup_user(buffer,
count + 1). However, the userspace only provides buffer of count bytes and
only these count bytes are verified to be okay to access. To ensure the
copied buffer is NUL terminated, we use memdup_user_nul instead. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: release mutex after nft_gc_seq_end from abort path
The commit mutex should not be released during the critical section
between nft_gc_seq_begin() and nft_gc_seq_end(), otherwise, async GC
worker could collect expired objects and get the released commit lock
within the same GC sequence.
nf_tables_module_autoload() temporarily releases the mutex to load
module dependencies, then it goes back to replay the transaction again.
Move it at the end of the abort phase after nft_gc_seq_end() is called. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix garbage collector racing against connect()
Garbage collector does not take into account the risk of embryo getting
enqueued during the garbage collection. If such embryo has a peer that
carries SCM_RIGHTS, two consecutive passes of scan_children() may see a
different set of children. Leading to an incorrectly elevated inflight
count, and then a dangling pointer within the gc_inflight_list.
sockets are AF_UNIX/SOCK_STREAM
S is an unconnected socket
L is a listening in-flight socket bound to addr, not in fdtable
V's fd will be passed via sendmsg(), gets inflight count bumped
connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc()
---------------- ------------------------- -----------
NS = unix_create1()
skb1 = sock_wmalloc(NS)
L = unix_find_other(addr)
unix_state_lock(L)
unix_peer(S) = NS
// V count=1 inflight=0
NS = unix_peer(S)
skb2 = sock_alloc()
skb_queue_tail(NS, skb2[V])
// V became in-flight
// V count=2 inflight=1
close(V)
// V count=1 inflight=1
// GC candidate condition met
for u in gc_inflight_list:
if (total_refs == inflight_refs)
add u to gc_candidates
// gc_candidates={L, V}
for u in gc_candidates:
scan_children(u, dec_inflight)
// embryo (skb1) was not
// reachable from L yet, so V's
// inflight remains unchanged
__skb_queue_tail(L, skb1)
unix_state_unlock(L)
for u in gc_candidates:
if (u.inflight)
scan_children(u, inc_inflight_move_tail)
// V count=1 inflight=2 (!)
If there is a GC-candidate listening socket, lock/unlock its state. This
makes GC wait until the end of any ongoing connect() to that socket. After
flipping the lock, a possibly SCM-laden embryo is already enqueued. And if
there is another embryo coming, it can not possibly carry SCM_RIGHTS. At
this point, unix_inflight() can not happen because unix_gc_lock is already
taken. Inflight graph remains unaffected. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: validate the parameters of bo mapping operations more clearly
Verify the parameters of
amdgpu_vm_bo_(map/replace_map/clearing_mappings) in one common place. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: delay all of ath9k_wmi_event_tasklet() until init is complete
The ath9k_wmi_event_tasklet() used in ath9k_htc assumes that all the data
structures have been fully initialised by the time it runs. However, because of
the order in which things are initialised, this is not guaranteed to be the
case, because the device is exposed to the USB subsystem before the ath9k driver
initialisation is completed.
We already committed a partial fix for this in commit:
8b3046abc99e ("ath9k_htc: fix NULL pointer dereference at ath9k_htc_tx_get_packet()")
However, that commit only aborted the WMI_TXSTATUS_EVENTID command in the event
tasklet, pairing it with an "initialisation complete" bit in the TX struct. It
seems syzbot managed to trigger the race for one of the other commands as well,
so let's just move the existing synchronisation bit to cover the whole
tasklet (setting it at the end of ath9k_htc_probe_device() instead of inside
ath9k_tx_init()). |
| In the Linux kernel, the following vulnerability has been resolved:
dm: call the resume method on internal suspend
There is this reported crash when experimenting with the lvm2 testsuite.
The list corruption is caused by the fact that the postsuspend and resume
methods were not paired correctly; there were two consecutive calls to the
origin_postsuspend function. The second call attempts to remove the
"hash_list" entry from a list, while it was already removed by the first
call.
Fix __dm_internal_resume so that it calls the preresume and resume
methods of the table's targets.
If a preresume method of some target fails, we are in a tricky situation.
We can't return an error because dm_internal_resume isn't supposed to
return errors. We can't return success, because then the "resume" and
"postsuspend" methods would not be paired correctly. So, we set the
DMF_SUSPENDED flag and we fake normal suspend - it may confuse userspace
tools, but it won't cause a kernel crash.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:56!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 8343 Comm: dmsetup Not tainted 6.8.0-rc6 #4
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
RIP: 0010:__list_del_entry_valid_or_report+0x77/0xc0
<snip>
RSP: 0018:ffff8881b831bcc0 EFLAGS: 00010282
RAX: 000000000000004e RBX: ffff888143b6eb80 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffff819053d0 RDI: 00000000ffffffff
RBP: ffff8881b83a3400 R08: 00000000fffeffff R09: 0000000000000058
R10: 0000000000000000 R11: ffffffff81a24080 R12: 0000000000000001
R13: ffff88814538e000 R14: ffff888143bc6dc0 R15: ffffffffa02e4bb0
FS: 00000000f7c0f780(0000) GS:ffff8893f0a40000(0000) knlGS:0000000000000000
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
CR2: 0000000057fb5000 CR3: 0000000143474000 CR4: 00000000000006b0
Call Trace:
<TASK>
? die+0x2d/0x80
? do_trap+0xeb/0xf0
? __list_del_entry_valid_or_report+0x77/0xc0
? do_error_trap+0x60/0x80
? __list_del_entry_valid_or_report+0x77/0xc0
? exc_invalid_op+0x49/0x60
? __list_del_entry_valid_or_report+0x77/0xc0
? asm_exc_invalid_op+0x16/0x20
? table_deps+0x1b0/0x1b0 [dm_mod]
? __list_del_entry_valid_or_report+0x77/0xc0
origin_postsuspend+0x1a/0x50 [dm_snapshot]
dm_table_postsuspend_targets+0x34/0x50 [dm_mod]
dm_suspend+0xd8/0xf0 [dm_mod]
dev_suspend+0x1f2/0x2f0 [dm_mod]
? table_deps+0x1b0/0x1b0 [dm_mod]
ctl_ioctl+0x300/0x5f0 [dm_mod]
dm_compat_ctl_ioctl+0x7/0x10 [dm_mod]
__x64_compat_sys_ioctl+0x104/0x170
do_syscall_64+0x184/0x1b0
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0xf7e6aead
<snip>
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: drop any code related to SCM_RIGHTS
This is dead code after we dropped support for passing io_uring fds
over SCM_RIGHTS, get rid of it. |