| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| ssl/s3_pkt.c in OpenSSL before 0.9.8i allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a DTLS ChangeCipherSpec packet that occurs before ClientHello. |
| mutt_ssl.c in mutt 1.5.19 and 1.5.20, when OpenSSL is used, does not properly handle a '\0' character in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority, a related issue to CVE-2009-2408. |
| mutt_ssl.c in mutt 1.5.16 and other versions before 1.5.19, when OpenSSL is used, does not verify the domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof SSL servers via an arbitrary valid certificate. |
| libraries/libldap/tls_o.c in OpenLDAP 2.2 and 2.4, and possibly other versions, when OpenSSL is used, does not properly handle a '\0' character in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority, a related issue to CVE-2009-2408. |
| Multiple memory leaks in the dtls1_process_out_of_seq_message function in ssl/d1_both.c in OpenSSL 0.9.8k and earlier 0.9.8 versions allow remote attackers to cause a denial of service (memory consumption) via DTLS records that (1) are duplicates or (2) have sequence numbers much greater than current sequence numbers, aka "DTLS fragment handling memory leak." |
| The dtls1_buffer_record function in ssl/d1_pkt.c in OpenSSL 0.9.8k and earlier 0.9.8 versions allows remote attackers to cause a denial of service (memory consumption) via a large series of "future epoch" DTLS records that are buffered in a queue, aka "DTLS record buffer limitation bug." |
| OpenSSL before 0.9.8k on WIN64 and certain other platforms does not properly handle a malformed ASN.1 structure, which allows remote attackers to cause a denial of service (invalid memory access and application crash) by placing this structure in the public key of a certificate, as demonstrated by an RSA public key. |
| OpenSSL, probably 0.9.6, does not verify the Basic Constraints for an intermediate CA-signed certificate, which allows remote attackers to spoof the certificates of trusted sites via a man-in-the-middle attack, a related issue to CVE-2002-0970. |
| The BN_from_montgomery function in crypto/bn/bn_mont.c in OpenSSL 0.9.8e and earlier does not properly perform Montgomery multiplication, which might allow local users to conduct a side-channel attack and retrieve RSA private keys. |
| Buffer overflow in the SSL_get_shared_ciphers function in OpenSSL 0.9.7 before 0.9.7l, 0.9.8 before 0.9.8d, and earlier versions has unspecified impact and remote attack vectors involving a long list of ciphers. |
| OpenSSL 0.9.7 before 0.9.7l, 0.9.8 before 0.9.8d, and earlier versions allows attackers to cause a denial of service (CPU consumption) via parasitic public keys with large (1) "public exponent" or (2) "public modulus" values in X.509 certificates that require extra time to process when using RSA signature verification. |
| OpenSSL 0.9.7 before 0.9.7l and 0.9.8 before 0.9.8d allows remote attackers to cause a denial of service (infinite loop and memory consumption) via malformed ASN.1 structures that trigger an improperly handled error condition. |
| Off-by-one error in the SSL_get_shared_ciphers function in OpenSSL 0.9.7 up to 0.9.7l, and 0.9.8 up to 0.9.8f, might allow remote attackers to execute arbitrary code via a crafted packet that triggers a one-byte buffer underflow. NOTE: this issue was introduced as a result of a fix for CVE-2006-3738. As of 20071012, it is unknown whether code execution is possible. |
| OpenSSL 0.9.8c-1 up to versions before 0.9.8g-9 on Debian-based operating systems uses a random number generator that generates predictable numbers, which makes it easier for remote attackers to conduct brute force guessing attacks against cryptographic keys. |
| The TLS protocol, and the SSL protocol 3.0 and possibly earlier, as used in Microsoft Internet Information Services (IIS) 7.0, mod_ssl in the Apache HTTP Server 2.2.14 and earlier, OpenSSL before 0.9.8l, GnuTLS 2.8.5 and earlier, Mozilla Network Security Services (NSS) 3.12.4 and earlier, multiple Cisco products, and other products, does not properly associate renegotiation handshakes with an existing connection, which allows man-in-the-middle attackers to insert data into HTTPS sessions, and possibly other types of sessions protected by TLS or SSL, by sending an unauthenticated request that is processed retroactively by a server in a post-renegotiation context, related to a "plaintext injection" attack, aka the "Project Mogul" issue. |
| Memory leak in the zlib_stateful_init function in crypto/comp/c_zlib.c in libssl in OpenSSL 0.9.8f through 0.9.8h allows remote attackers to cause a denial of service (memory consumption) via multiple calls, as demonstrated by initial SSL client handshakes to the Apache HTTP Server mod_ssl that specify a compression algorithm. |
| The PRNG implementation for the OpenSSL FIPS Object Module 1.1.1 does not perform auto-seeding during the FIPS self-test, which generates random data that is more predictable than expected and makes it easier for attackers to bypass protection mechanisms that rely on the randomness. |
| Off-by-one error in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8f allows remote attackers to execute arbitrary code via unspecified vectors. |
| OpenSSL 0.9.8f and 0.9.8g allows remote attackers to cause a denial of service (crash) via a TLS handshake that omits the Server Key Exchange message and uses "particular cipher suites," which triggers a NULL pointer dereference. |
| Double free vulnerability in OpenSSL 0.9.8f and 0.9.8g, when the TLS server name extensions are enabled, allows remote attackers to cause a denial of service (crash) via a malformed Client Hello packet. NOTE: some of these details are obtained from third party information. |