Search

Search Results (334238 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-1988 2 Wordpress, Wpdecent 2 Wordpress, Flexi Product Slider And Grid For Woocommerce 2026-02-18 7.5 High
The Flexi Product Slider and Grid for WooCommerce plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 1.0.5 via the `flexipsg_carousel` shortcode. This is due to the `theme` parameter being directly concatenated into a file path without proper sanitization or validation, allowing directory traversal. This makes it possible for authenticated attackers, with Contributor-level access and above, to include and execute arbitrary PHP files on the server via the `theme` parameter granted they can create posts with shortcodes.
CVE-2026-2022 2 Edgarrojas, Wordpress 2 Smart Forms – When You Need More Than Just A Contact Form, Wordpress 2026-02-18 4.3 Medium
The Smart Forms plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the 'rednao_smart_forms_get_campaigns' AJAX action in all versions up to, and including, 2.6.99. This makes it possible for authenticated attackers, with Subscriber-level access and above, to retrieve donation campaign data including campaign IDs and names.
CVE-2026-23114 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64/fpsimd: ptrace: Fix SVE writes on !SME systems When SVE is supported but SME is not supported, a ptrace write to the NT_ARM_SVE regset can place the tracee into an invalid state where (non-streaming) SVE register data is stored in FP_STATE_SVE format but TIF_SVE is clear. This can result in a later warning from fpsimd_restore_current_state(), e.g. WARNING: CPU: 0 PID: 7214 at arch/arm64/kernel/fpsimd.c:383 fpsimd_restore_current_state+0x50c/0x748 When this happens, fpsimd_restore_current_state() will set TIF_SVE, placing the task into the correct state. This occurs before any other check of TIF_SVE can possibly occur, as other checks of TIF_SVE only happen while the FPSIMD/SVE/SME state is live. Thus, aside from the warning, there is no functional issue. This bug was introduced during rework to error handling in commit: 9f8bf718f2923 ("arm64/fpsimd: ptrace: Gracefully handle errors") ... where the setting of TIF_SVE was moved into a block which is only executed when system_supports_sme() is true. Fix this by removing the system_supports_sme() check. This ensures that TIF_SVE is set for (SVE-formatted) writes to NT_ARM_SVE, at the cost of unconditionally manipulating the tracee's saved svcr value. The manipulation of svcr is benign and inexpensive, and we already do similar elsewhere (e.g. during signal handling), so I don't think it's worth guarding this with system_supports_sme() checks. Aside from the above, there is no functional change. The 'type' argument to sve_set_common() is only set to ARM64_VEC_SME (in ssve_set())) when system_supports_sme(), so the ARM64_VEC_SME case in the switch statement is still unreachable when !system_supports_sme(). When CONFIG_ARM64_SME=n, the only caller of sve_set_common() is sve_set(), and the compiler can constant-fold for the case where type is ARM64_VEC_SVE, removing the logic for other cases.
CVE-2026-23119 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: provide a net pointer to __skb_flow_dissect() After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect") we have to provide a net pointer to __skb_flow_dissect(), either via skb->dev, skb->sk, or a user provided pointer. In the following case, syzbot was able to cook a bare skb. WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053 Call Trace: <TASK> bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline] __bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157 bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline] bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline] bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515 xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388 bpf_prog_run_xdp include/net/xdp.h:700 [inline] bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421 bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390 bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703 __sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182 __do_sys_bpf kernel/bpf/syscall.c:6274 [inline] __se_sys_bpf kernel/bpf/syscall.c:6272 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94
CVE-2026-23120 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: l2tp: avoid one data-race in l2tp_tunnel_del_work() We should read sk->sk_socket only when dealing with kernel sockets. syzbot reported the following data-race: BUG: KCSAN: data-race in l2tp_tunnel_del_work / sk_common_release write to 0xffff88811c182b20 of 8 bytes by task 5365 on cpu 0: sk_set_socket include/net/sock.h:2092 [inline] sock_orphan include/net/sock.h:2118 [inline] sk_common_release+0xae/0x230 net/core/sock.c:4003 udp_lib_close+0x15/0x20 include/net/udp.h:325 inet_release+0xce/0xf0 net/ipv4/af_inet.c:437 __sock_release net/socket.c:662 [inline] sock_close+0x6b/0x150 net/socket.c:1455 __fput+0x29b/0x650 fs/file_table.c:468 ____fput+0x1c/0x30 fs/file_table.c:496 task_work_run+0x131/0x1a0 kernel/task_work.c:233 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] __exit_to_user_mode_loop kernel/entry/common.c:44 [inline] exit_to_user_mode_loop+0x1fe/0x740 kernel/entry/common.c:75 __exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline] syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline] do_syscall_64+0x1e1/0x2b0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f read to 0xffff88811c182b20 of 8 bytes by task 827 on cpu 1: l2tp_tunnel_del_work+0x2f/0x1a0 net/l2tp/l2tp_core.c:1418 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0x4ce/0x9d0 kernel/workqueue.c:3340 worker_thread+0x582/0x770 kernel/workqueue.c:3421 kthread+0x489/0x510 kernel/kthread.c:463 ret_from_fork+0x149/0x290 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 value changed: 0xffff88811b818000 -> 0x0000000000000000
CVE-2026-23127 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: perf: Fix refcount warning on event->mmap_count increment When calling refcount_inc(&event->mmap_count) inside perf_mmap_rb(), the following warning is triggered: refcount_t: addition on 0; use-after-free. WARNING: lib/refcount.c:25 PoC: struct perf_event_attr attr = {0}; int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0); mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); int victim = syscall(__NR_perf_event_open, &attr, 0, -1, fd, PERF_FLAG_FD_OUTPUT); mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, victim, 0); This occurs when creating a group member event with the flag PERF_FLAG_FD_OUTPUT. The group leader should be mmap-ed and then mmap-ing the event triggers the warning. Since the event has copied the output_event in perf_event_set_output(), event->rb is set. As a result, perf_mmap_rb() calls refcount_inc(&event->mmap_count) when event->mmap_count = 0. Disallow the case when event->mmap_count = 0. This also prevents two events from updating the same user_page.
CVE-2026-23131 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: hp-bioscfg: Fix kobject warnings for empty attribute names The hp-bioscfg driver attempts to register kobjects with empty names when the HP BIOS returns attributes with empty name strings. This causes multiple kernel warnings: kobject: (00000000135fb5e6): attempted to be registered with empty name! WARNING: CPU: 14 PID: 3336 at lib/kobject.c:219 kobject_add_internal+0x2eb/0x310 Add validation in hp_init_bios_buffer_attribute() to check if the attribute name is empty after parsing it from the WMI buffer. If empty, log a debug message and skip registration of that attribute, allowing the module to continue processing other valid attributes.
CVE-2026-23136 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: reset sparse-read state in osd_fault() When a fault occurs, the connection is abandoned, reestablished, and any pending operations are retried. The OSD client tracks the progress of a sparse-read reply using a separate state machine, largely independent of the messenger's state. If a connection is lost mid-payload or the sparse-read state machine returns an error, the sparse-read state is not reset. The OSD client will then interpret the beginning of a new reply as the continuation of the old one. If this makes the sparse-read machinery enter a failure state, it may never recover, producing loops like: libceph: [0] got 0 extents libceph: data len 142248331 != extent len 0 libceph: osd0 (1)...:6801 socket error on read libceph: data len 142248331 != extent len 0 libceph: osd0 (1)...:6801 socket error on read Therefore, reset the sparse-read state in osd_fault(), ensuring retries start from a clean state.
CVE-2026-23140 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bpf, test_run: Subtract size of xdp_frame from allowed metadata size The xdp_frame structure takes up part of the XDP frame headroom, limiting the size of the metadata. However, in bpf_test_run, we don't take this into account, which makes it possible for userspace to supply a metadata size that is too large (taking up the entire headroom). If userspace supplies such a large metadata size in live packet mode, the xdp_update_frame_from_buff() call in xdp_test_run_init_page() call will fail, after which packet transmission proceeds with an uninitialised frame structure, leading to the usual Bad Stuff. The commit in the Fixes tag fixed a related bug where the second check in xdp_update_frame_from_buff() could fail, but did not add any additional constraints on the metadata size. Complete the fix by adding an additional check on the metadata size. Reorder the checks slightly to make the logic clearer and add a comment.
CVE-2026-23141 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: send: check for inline extents in range_is_hole_in_parent() Before accessing the disk_bytenr field of a file extent item we need to check if we are dealing with an inline extent. This is because for inline extents their data starts at the offset of the disk_bytenr field. So accessing the disk_bytenr means we are accessing inline data or in case the inline data is less than 8 bytes we can actually cause an invalid memory access if this inline extent item is the first item in the leaf or access metadata from other items.
CVE-2026-23148 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix race in nvmet_bio_done() leading to NULL pointer dereference There is a race condition in nvmet_bio_done() that can cause a NULL pointer dereference in blk_cgroup_bio_start(): 1. nvmet_bio_done() is called when a bio completes 2. nvmet_req_complete() is called, which invokes req->ops->queue_response(req) 3. The queue_response callback can re-queue and re-submit the same request 4. The re-submission reuses the same inline_bio from nvmet_req 5. Meanwhile, nvmet_req_bio_put() (called after nvmet_req_complete) invokes bio_uninit() for inline_bio, which sets bio->bi_blkg to NULL 6. The re-submitted bio enters submit_bio_noacct_nocheck() 7. blk_cgroup_bio_start() dereferences bio->bi_blkg, causing a crash: BUG: kernel NULL pointer dereference, address: 0000000000000028 #PF: supervisor read access in kernel mode RIP: 0010:blk_cgroup_bio_start+0x10/0xd0 Call Trace: submit_bio_noacct_nocheck+0x44/0x250 nvmet_bdev_execute_rw+0x254/0x370 [nvmet] process_one_work+0x193/0x3c0 worker_thread+0x281/0x3a0 Fix this by reordering nvmet_bio_done() to call nvmet_req_bio_put() BEFORE nvmet_req_complete(). This ensures the bio is cleaned up before the request can be re-submitted, preventing the race condition.
CVE-2026-23152 1 Linux 1 Linux Kernel 2026-02-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: correctly decode TTLM with default link map TID-To-Link Mapping (TTLM) elements do not contain any link mapping presence indicator if a default mapping is used and parsing needs to be skipped. Note that access points should not explicitly report an advertised TTLM with a default mapping as that is the implied mapping if the element is not included, this is even the case when switching back to the default mapping. However, mac80211 would incorrectly parse the frame and would also read one byte beyond the end of the element.
CVE-2026-23159 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf: sched: Fix perf crash with new is_user_task() helper In order to do a user space stacktrace the current task needs to be a user task that has executed in user space. It use to be possible to test if a task is a user task or not by simply checking the task_struct mm field. If it was non NULL, it was a user task and if not it was a kernel task. But things have changed over time, and some kernel tasks now have their own mm field. An idea was made to instead test PF_KTHREAD and two functions were used to wrap this check in case it became more complex to test if a task was a user task or not[1]. But this was rejected and the C code simply checked the PF_KTHREAD directly. It was later found that not all kernel threads set PF_KTHREAD. The io-uring helpers instead set PF_USER_WORKER and this needed to be added as well. But checking the flags is still not enough. There's a very small window when a task exits that it frees its mm field and it is set back to NULL. If perf were to trigger at this moment, the flags test would say its a user space task but when perf would read the mm field it would crash with at NULL pointer dereference. Now there are flags that can be used to test if a task is exiting, but they are set in areas that perf may still want to profile the user space task (to see where it exited). The only real test is to check both the flags and the mm field. Instead of making this modification in every location, create a new is_user_task() helper function that does all the tests needed to know if it is safe to read the user space memory or not. [1] https://lore.kernel.org/all/20250425204120.639530125@goodmis.org/
CVE-2026-23161 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/shmem, swap: fix race of truncate and swap entry split The helper for shmem swap freeing is not handling the order of swap entries correctly. It uses xa_cmpxchg_irq to erase the swap entry, but it gets the entry order before that using xa_get_order without lock protection, and it may get an outdated order value if the entry is split or changed in other ways after the xa_get_order and before the xa_cmpxchg_irq. And besides, the order could grow and be larger than expected, and cause truncation to erase data beyond the end border. For example, if the target entry and following entries are swapped in or freed, then a large folio was added in place and swapped out, using the same entry, the xa_cmpxchg_irq will still succeed, it's very unlikely to happen though. To fix that, open code the Xarray cmpxchg and put the order retrieval and value checking in the same critical section. Also, ensure the order won't exceed the end border, skip it if the entry goes across the border. Skipping large swap entries crosses the end border is safe here. Shmem truncate iterates the range twice, in the first iteration, find_lock_entries already filtered such entries, and shmem will swapin the entries that cross the end border and partially truncate the folio (split the folio or at least zero part of it). So in the second loop here, if we see a swap entry that crosses the end order, it must at least have its content erased already. I observed random swapoff hangs and kernel panics when stress testing ZSWAP with shmem. After applying this patch, all problems are gone.
CVE-2026-23168 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: flex_proportions: make fprop_new_period() hardirq safe Bernd has reported a lockdep splat from flexible proportions code that is essentially complaining about the following race: <timer fires> run_timer_softirq - we are in softirq context call_timer_fn writeout_period fprop_new_period write_seqcount_begin(&p->sequence); <hardirq is raised> ... blk_mq_end_request() blk_update_request() ext4_end_bio() folio_end_writeback() __wb_writeout_add() __fprop_add_percpu_max() if (unlikely(max_frac < FPROP_FRAC_BASE)) { fprop_fraction_percpu() seq = read_seqcount_begin(&p->sequence); - sees odd sequence so loops indefinitely Note that a deadlock like this is only possible if the bdi has configured maximum fraction of writeout throughput which is very rare in general but frequent for example for FUSE bdis. To fix this problem we have to make sure write section of the sequence counter is irqsafe.
CVE-2026-23172 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: net: wwan: t7xx: fix potential skb->frags overflow in RX path When receiving data in the DPMAIF RX path, the t7xx_dpmaif_set_frag_to_skb() function adds page fragments to an skb without checking if the number of fragments has exceeded MAX_SKB_FRAGS. This could lead to a buffer overflow in skb_shinfo(skb)->frags[] array, corrupting adjacent memory and potentially causing kernel crashes or other undefined behavior. This issue was identified through static code analysis by comparing with a similar vulnerability fixed in the mt76 driver commit b102f0c522cf ("mt76: fix array overflow on receiving too many fragments for a packet"). The vulnerability could be triggered if the modem firmware sends packets with excessive fragments. While under normal protocol conditions (MTU 3080 bytes, BAT buffer 3584 bytes), a single packet should not require additional fragments, the kernel should not blindly trust firmware behavior. Malicious, buggy, or compromised firmware could potentially craft packets with more fragments than the kernel expects. Fix this by adding a bounds check before calling skb_add_rx_frag() to ensure nr_frags does not exceed MAX_SKB_FRAGS. The check must be performed before unmapping to avoid a page leak and double DMA unmap during device teardown.
CVE-2025-70955 1 Ton-blockchain 1 Ton 2026-02-18 7.5 High
A Stack Overflow vulnerability was discovered in the TON Virtual Machine (TVM) before v2024.10. The vulnerability stems from the improper handling of vmstate and continuation jump instructions, which allow for continuous dynamic tail calls. An attacker can exploit this by crafting a smart contract with deeply nested jump logic. Even within permissible gas limits, this nested execution exhausts the host process's stack space, causing the validator node to crash. This results in a Denial of Service (DoS) for the TON blockchain network.
CVE-2026-1512 2 Wordpress, Wpdevteam 2 Wordpress, Essential Addons For Elementor – Popular Elementor Templates & Widgets 2026-02-18 6.4 Medium
The Essential Addons for Elementor – Popular Elementor Templates & Widgets plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's Info Box widget in all versions up to, and including, 6.5.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2026-1792 2 Owencutajar, Wordpress 2 Geo Widget, Wordpress 2026-02-18 6.1 Medium
The Geo Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the URL path in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-8572 2 Dreamstechnologies, Wordpress 2 Truelysell Core, Wordpress 2026-02-18 9.8 Critical
The Truelysell Core plugin for WordPress is vulnerable to privilege escalation in versions less than, or equal to, 1.8.7. This is due to insufficient validation of the user_role parameter during user registration. This makes it possible for unauthenticated attackers to create accounts with elevated privileges, including administrator access.