| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Pass netdev to mlx5e_destroy_netdev instead of priv
mlx5e_priv is an unstable structure that can be memset(0) if profile
attaching fails.
Pass netdev to mlx5e_destroy_netdev() to guarantee it will work on a
valid netdev.
On mlx5e_remove: Check validity of priv->profile, before attempting
to cleanup any resources that might be not there.
This fixes a kernel oops in mlx5e_remove when switchdev mode fails due
to change profile failure.
$ devlink dev eswitch set pci/0000:00:03.0 mode switchdev
Error: mlx5_core: Failed setting eswitch to offloads.
dmesg:
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12
$ devlink dev reload pci/0000:00:03.0 ==> oops
BUG: kernel NULL pointer dereference, address: 0000000000000370
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 15 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc5+ #115 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:mlx5e_dcbnl_dscp_app+0x23/0x100
RSP: 0018:ffffc9000083f8b8 EFLAGS: 00010286
RAX: ffff8881126fc380 RBX: ffff8881015ac400 RCX: ffffffff826ffc45
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8881035109c0
RBP: ffff8881035109c0 R08: ffff888101e3e838 R09: ffff888100264e10
R10: ffffc9000083f898 R11: ffffc9000083f8a0 R12: ffff888101b921a0
R13: ffff888101b921a0 R14: ffff8881015ac9a0 R15: ffff8881015ac400
FS: 00007f789a3c8740(0000) GS:ffff88856aa59000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000370 CR3: 000000010b6c0001 CR4: 0000000000370ef0
Call Trace:
<TASK>
mlx5e_remove+0x57/0x110
device_release_driver_internal+0x19c/0x200
bus_remove_device+0xc6/0x130
device_del+0x160/0x3d0
? devl_param_driverinit_value_get+0x2d/0x90
mlx5_detach_device+0x89/0xe0
mlx5_unload_one_devl_locked+0x3a/0x70
mlx5_devlink_reload_down+0xc8/0x220
devlink_reload+0x7d/0x260
devlink_nl_reload_doit+0x45b/0x5a0
genl_family_rcv_msg_doit+0xe8/0x140 |
| In the Linux kernel, the following vulnerability has been resolved:
inet: frags: drop fraglist conntrack references
Jakub added a warning in nf_conntrack_cleanup_net_list() to make debugging
leaked skbs/conntrack references more obvious.
syzbot reports this as triggering, and I can also reproduce this via
ip_defrag.sh selftest:
conntrack cleanup blocked for 60s
WARNING: net/netfilter/nf_conntrack_core.c:2512
[..]
conntrack clenups gets stuck because there are skbs with still hold nf_conn
references via their frag_list.
net.core.skb_defer_max=0 makes the hang disappear.
Eric Dumazet points out that skb_release_head_state() doesn't follow the
fraglist.
ip_defrag.sh can only reproduce this problem since
commit 6471658dc66c ("udp: use skb_attempt_defer_free()"), but AFAICS this
problem could happen with TCP as well if pmtu discovery is off.
The relevant problem path for udp is:
1. netns emits fragmented packets
2. nf_defrag_v6_hook reassembles them (in output hook)
3. reassembled skb is tracked (skb owns nf_conn reference)
4. ip6_output refragments
5. refragmented packets also own nf_conn reference (ip6_fragment
calls ip6_copy_metadata())
6. on input path, nf_defrag_v6_hook skips defragmentation: the
fragments already have skb->nf_conn attached
7. skbs are reassembled via ipv6_frag_rcv()
8. skb_consume_udp -> skb_attempt_defer_free() -> skb ends up
in pcpu freelist, but still has nf_conn reference.
Possible solutions:
1 let defrag engine drop nf_conn entry, OR
2 export kick_defer_list_purge() and call it from the conntrack
netns exit callback, OR
3 add skb_has_frag_list() check to skb_attempt_defer_free()
2 & 3 also solve ip_defrag.sh hang but share same drawback:
Such reassembled skbs, queued to socket, can prevent conntrack module
removal until userspace has consumed the packet. While both tcp and udp
stack do call nf_reset_ct() before placing skb on socket queue, that
function doesn't iterate frag_list skbs.
Therefore drop nf_conn entries when they are placed in defrag queue.
Keep the nf_conn entry of the first (offset 0) skb so that reassembled
skb retains nf_conn entry for sake of TX path.
Note that fixes tag is incorrect; it points to the commit introducing the
'ip_defrag.sh reproducible problem': no need to backport this patch to
every stable kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gud: fix NULL fb and crtc dereferences on USB disconnect
On disconnect drm_atomic_helper_disable_all() is called which
sets both the fb and crtc for a plane to NULL before invoking a commit.
This causes a kernel oops on every display disconnect.
Add guards for those dereferences. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_eiointc_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_eiointc_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_ipi_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_pch_pic_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_pch_pic_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix error handling in the init_task on load
If the init_task fails during a driver load, we end up without vports and
netdevs, effectively failing the entire process. In that state a
subsequent reset will result in a crash as the service task attempts to
access uninitialized resources. Following trace is from an error in the
init_task where the CREATE_VPORT (op 501) is rejected by the FW:
[40922.763136] idpf 0000:83:00.0: Device HW Reset initiated
[40924.449797] idpf 0000:83:00.0: Transaction failed (op 501)
[40958.148190] idpf 0000:83:00.0: HW reset detected
[40958.161202] BUG: kernel NULL pointer dereference, address: 00000000000000a8
...
[40958.168094] Workqueue: idpf-0000:83:00.0-vc_event idpf_vc_event_task [idpf]
[40958.168865] RIP: 0010:idpf_vc_event_task+0x9b/0x350 [idpf]
...
[40958.177932] Call Trace:
[40958.178491] <TASK>
[40958.179040] process_one_work+0x226/0x6d0
[40958.179609] worker_thread+0x19e/0x340
[40958.180158] ? __pfx_worker_thread+0x10/0x10
[40958.180702] kthread+0x10f/0x250
[40958.181238] ? __pfx_kthread+0x10/0x10
[40958.181774] ret_from_fork+0x251/0x2b0
[40958.182307] ? __pfx_kthread+0x10/0x10
[40958.182834] ret_from_fork_asm+0x1a/0x30
[40958.183370] </TASK>
Fix the error handling in the init_task to make sure the service and
mailbox tasks are disabled if the error happens during load. These are
started in idpf_vc_core_init(), which spawns the init_task and has no way
of knowing if it failed. If the error happens on reset, following
successful driver load, the tasks can still run, as that will allow the
netdevs to attempt recovery through another reset. Stop the PTP callbacks
either way as those will be restarted by the call to idpf_vc_core_init()
during a successful reset. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: mpsse: fix reference leak in gpio_mpsse_probe() error paths
The reference obtained by calling usb_get_dev() is not released in the
gpio_mpsse_probe() error paths. Fix that by using device managed helper
functions. Also remove the usb_put_dev() call in the disconnect function
since now it will be released automatically. |
| The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 3.4.4 via the 'add_reply' function due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with subscriber-level access and above, to steal file attachments uploaded by other users by specifying arbitrary attachment IDs in the 'description_attachments' parameter, re-associating those files to their own tickets and removing access from the original owners. |
| In the Linux kernel, the following vulnerability has been resolved:
net: 3com: 3c59x: fix possible null dereference in vortex_probe1()
pdev can be null and free_ring: can be called in 1297 with a null
pdev. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: sh: rz-dmac: fix device leak on probe failure
Make sure to drop the reference taken when looking up the ICU device
during probe also on probe failures (e.g. probe deferral). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix NULL dereference on root when tracing inode eviction
When evicting an inode the first thing we do is to setup tracing for it,
which implies fetching the root's id. But in btrfs_evict_inode() the
root might be NULL, as implied in the next check that we do in
btrfs_evict_inode().
Hence, we either should set the ->root_objectid to 0 in case the root is
NULL, or we move tracing setup after checking that the root is not
NULL. Setting the rootid to 0 at least gives us the possibility to trace
this call even in the case when the root is NULL, so that's the solution
taken here. |
| OpenCTI 3.3.1 is vulnerable to a reflected cross-site scripting (XSS) attack via the /graphql endpoint. An attacker can inject arbitrary JavaScript code by sending a crafted GET request with a malicious payload in the query string, leading to execution of JavaScript in the victim's browser. For example, a request to /graphql?'"--></style></scRipt><scRipt>alert('Raif_Berkay')</scRipt> will trigger an alert. This vulnerability was discovered by Raif Berkay Dincel and confirmed on Linux Mint and Windows 10. |
| RM Downloader 2.50.60 contains a local buffer overflow vulnerability in the 'Load' parameter that allows attackers to execute arbitrary code by overwriting memory. Attackers can craft a malicious payload with an egg hunter technique to bypass memory protections and execute commands like launching calc.exe. |
| Navigate CMS 2.8.7 contains a cross-site request forgery vulnerability that allows attackers to upload malicious extensions through a crafted HTML page. Attackers can trick authenticated administrators into executing arbitrary file uploads by leveraging the extension upload functionality without additional validation. |
| Crystal Shard http-protection 0.2.0 contains an IP spoofing vulnerability that allows attackers to bypass protection middleware by manipulating request headers. Attackers can hardcode consistent IP values across X-Forwarded-For, X-Client-IP, and X-Real-IP headers to circumvent security checks and gain unauthorized access. |
| AirControl 1.4.2 contains a pre-authentication remote code execution vulnerability that allows unauthenticated attackers to execute arbitrary system commands through malicious Java expression injection. Attackers can exploit the /.seam endpoint by crafting a specially constructed URL with embedded Java expressions to run commands with the application's system privileges. |
| Online-Exam-System 2015 contains a time-based blind SQL injection vulnerability in the feedback form that allows attackers to extract database password hashes. Attackers can exploit the 'feed.php' endpoint by crafting malicious payload requests that use time delays to systematically enumerate user password characters. |
| Frigate 3.36.0.9 contains a local buffer overflow vulnerability in the Command Line input field that allows attackers to execute arbitrary code. Attackers can craft a malicious payload to overflow the buffer, bypass DEP, and execute commands like launching calc.exe through a specially crafted input sequence. |
| 10-Strike Bandwidth Monitor 3.9 contains a buffer overflow vulnerability that allows attackers to bypass SafeSEH, ASLR, and DEP protections through carefully crafted input. Attackers can exploit the vulnerability by sending a malicious payload to the application's registration key input, enabling remote code execution and launching arbitrary system commands. |