| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/efa: Fix wrong resources deallocation order
When trying to destroy QP or CQ, we first decrease the refcount and
potentially free memory regions allocated for the object and then
request the device to destroy the object. If the device fails, the
object isn't fully destroyed so the user/IB core can try to destroy the
object again which will lead to underflow when trying to decrease an
already zeroed refcount.
Deallocate resources in reverse order of allocating them to safely free
them. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: always release netdev hooks from notifier
This reverts "netfilter: nf_tables: skip netdev events generated on netns removal".
The problem is that when a veth device is released, the veth release
callback will also queue the peer netns device for removal.
Its possible that the peer netns is also slated for removal. In this
case, the device memory is already released before the pre_exit hook of
the peer netns runs:
BUG: KASAN: slab-use-after-free in nf_hook_entry_head+0x1b8/0x1d0
Read of size 8 at addr ffff88812c0124f0 by task kworker/u8:1/45
Workqueue: netns cleanup_net
Call Trace:
nf_hook_entry_head+0x1b8/0x1d0
__nf_unregister_net_hook+0x76/0x510
nft_netdev_unregister_hooks+0xa0/0x220
__nft_release_hook+0x184/0x490
nf_tables_pre_exit_net+0x12f/0x1b0
..
Order is:
1. First netns is released, veth_dellink() queues peer netns device
for removal
2. peer netns is queued for removal
3. peer netns device is released, unreg event is triggered
4. unreg event is ignored because netns is going down
5. pre_exit hook calls nft_netdev_unregister_hooks but device memory
might be free'd already. |
| In the Linux kernel, the following vulnerability has been resolved:
ipu3-imgu: Fix NULL pointer dereference in imgu_subdev_set_selection()
Calling v4l2_subdev_get_try_crop() and v4l2_subdev_get_try_compose()
with a subdev state of NULL leads to a NULL pointer dereference. This
can currently happen in imgu_subdev_set_selection() when the state
passed in is NULL, as this method first gets pointers to both the "try"
and "active" states and only then decides which to use.
The same issue has been addressed for imgu_subdev_get_selection() with
commit 30d03a0de650 ("ipu3-imgu: Fix NULL pointer dereference in active
selection access"). However the issue still persists in
imgu_subdev_set_selection().
Therefore, apply a similar fix as done in the aforementioned commit to
imgu_subdev_set_selection(). To keep things a bit cleaner, introduce
helper functions for "crop" and "compose" access and use them in both
imgu_subdev_set_selection() and imgu_subdev_get_selection(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix memory leak in lpfc_create_port()
Commit 5e633302ace1 ("scsi: lpfc: vmid: Add support for VMID in mailbox
command") introduced allocations for the VMID resources in
lpfc_create_port() after the call to scsi_host_alloc(). Upon failure on the
VMID allocations, the new code would branch to the 'out' label, which
returns NULL without unwinding anything, thus skipping the call to
scsi_host_put().
Fix the problem by creating a separate label 'out_free_vmid' to unwind the
VMID resources and make the 'out_put_shost' label call only
scsi_host_put(), as was done before the introduction of allocations for
VMID. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: tpm_tis: Add the missed acpi_put_table() to fix memory leak
In check_acpi_tpm2(), we get the TPM2 table just to make
sure the table is there, not used after the init, so the
acpi_put_table() should be added to release the ACPI memory. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sunplus: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value,
1. the memory allocated in mmc_alloc_host() will be leaked
2. null-ptr-deref will happen when calling mmc_remove_host()
in remove function spmmc_drv_remove() because deleting not
added device.
Fix this by checking the return value of mmc_add_host(). Moreover,
I fixed the error handling path of spmmc_drv_probe() to clean up. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/adreno: Fix null ptr access in adreno_gpu_cleanup()
Fix the below kernel panic due to null pointer access:
[ 18.504431] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000048
[ 18.513464] Mem abort info:
[ 18.516346] ESR = 0x0000000096000005
[ 18.520204] EC = 0x25: DABT (current EL), IL = 32 bits
[ 18.525706] SET = 0, FnV = 0
[ 18.528878] EA = 0, S1PTW = 0
[ 18.532117] FSC = 0x05: level 1 translation fault
[ 18.537138] Data abort info:
[ 18.540110] ISV = 0, ISS = 0x00000005
[ 18.544060] CM = 0, WnR = 0
[ 18.547109] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000112826000
[ 18.553738] [0000000000000048] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
[ 18.562690] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
**Snip**
[ 18.696758] Call trace:
[ 18.699278] adreno_gpu_cleanup+0x30/0x88
[ 18.703396] a6xx_destroy+0xc0/0x130
[ 18.707066] a6xx_gpu_init+0x308/0x424
[ 18.710921] adreno_bind+0x178/0x288
[ 18.714590] component_bind_all+0xe0/0x214
[ 18.718797] msm_drm_bind+0x1d4/0x614
[ 18.722566] try_to_bring_up_aggregate_device+0x16c/0x1b8
[ 18.728105] __component_add+0xa0/0x158
[ 18.732048] component_add+0x20/0x2c
[ 18.735719] adreno_probe+0x40/0xc0
[ 18.739300] platform_probe+0xb4/0xd4
[ 18.743068] really_probe+0xfc/0x284
[ 18.746738] __driver_probe_device+0xc0/0xec
[ 18.751129] driver_probe_device+0x48/0x110
[ 18.755421] __device_attach_driver+0xa8/0xd0
[ 18.759900] bus_for_each_drv+0x90/0xdc
[ 18.763843] __device_attach+0xfc/0x174
[ 18.767786] device_initial_probe+0x20/0x2c
[ 18.772090] bus_probe_device+0x40/0xa0
[ 18.776032] deferred_probe_work_func+0x94/0xd0
[ 18.780686] process_one_work+0x190/0x3d0
[ 18.784805] worker_thread+0x280/0x3d4
[ 18.788659] kthread+0x104/0x1c0
[ 18.791981] ret_from_fork+0x10/0x20
[ 18.795654] Code: f9400408 aa0003f3 aa1f03f4 91142015 (f9402516)
[ 18.801913] ---[ end trace 0000000000000000 ]---
[ 18.809039] Kernel panic - not syncing: Oops: Fatal exception
Patchwork: https://patchwork.freedesktop.org/patch/515605/ |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "Bluetooth: btsdio: fix use after free bug in btsdio_remove due to unfinished work"
This reverts commit 1e9ac114c4428fdb7ff4635b45d4f46017e8916f.
This patch introduces a possible null-ptr-def problem. Revert it. And the
fixed bug by this patch have resolved by commit 73f7b171b7c0 ("Bluetooth:
btsdio: fix use after free bug in btsdio_remove due to race condition"). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: fix race condition UAF in i915_perf_add_config_ioctl
Userspace can guess the id value and try to race oa_config object creation
with config remove, resulting in a use-after-free if we dereference the
object after unlocking the metrics_lock. For that reason, unlocking the
metrics_lock must be done after we are done dereferencing the object.
[tursulin: Manually added stable tag.]
(cherry picked from commit 49f6f6483b652108bcb73accd0204a464b922395) |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix timeout of a call that hasn't yet been granted a channel
afs_make_call() calls rxrpc_kernel_begin_call() to begin a call (which may
get stalled in the background waiting for a connection to become
available); it then calls rxrpc_kernel_set_max_life() to set the timeouts -
but that starts the call timer so the call timer might then expire before
we get a connection assigned - leading to the following oops if the call
stalled:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
CPU: 1 PID: 5111 Comm: krxrpcio/0 Not tainted 6.3.0-rc7-build3+ #701
RIP: 0010:rxrpc_alloc_txbuf+0xc0/0x157
...
Call Trace:
<TASK>
rxrpc_send_ACK+0x50/0x13b
rxrpc_input_call_event+0x16a/0x67d
rxrpc_io_thread+0x1b6/0x45f
? _raw_spin_unlock_irqrestore+0x1f/0x35
? rxrpc_input_packet+0x519/0x519
kthread+0xe7/0xef
? kthread_complete_and_exit+0x1b/0x1b
ret_from_fork+0x22/0x30
Fix this by noting the timeouts in struct rxrpc_call when the call is
created. The timer will be started when the first packet is transmitted.
It shouldn't be possible to trigger this directly from userspace through
AF_RXRPC as sendmsg() will return EBUSY if the call is in the
waiting-for-conn state if it dropped out of the wait due to a signal. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab-out-of-bounds in init_smb2_rsp_hdr
When smb1 mount fails, KASAN detect slab-out-of-bounds in
init_smb2_rsp_hdr like the following one.
For smb1 negotiate(56bytes) , init_smb2_rsp_hdr() for smb2 is called.
The issue occurs while handling smb1 negotiate as smb2 server operations.
Add smb server operations for smb1 (get_cmd_val, init_rsp_hdr,
allocate_rsp_buf, check_user_session) to handle smb1 negotiate so that
smb2 server operation does not handle it.
[ 411.400423] CIFS: VFS: Use of the less secure dialect vers=1.0 is
not recommended unless required for access to very old servers
[ 411.400452] CIFS: Attempting to mount \\192.168.45.139\homes
[ 411.479312] ksmbd: init_smb2_rsp_hdr : 492
[ 411.479323] ==================================================================
[ 411.479327] BUG: KASAN: slab-out-of-bounds in
init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd]
[ 411.479369] Read of size 16 at addr ffff888488ed0734 by task kworker/14:1/199
[ 411.479379] CPU: 14 PID: 199 Comm: kworker/14:1 Tainted: G
OE 6.1.21 #3
[ 411.479386] Hardware name: ASUSTeK COMPUTER INC. Z10PA-D8
Series/Z10PA-D8 Series, BIOS 3801 08/23/2019
[ 411.479390] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd]
[ 411.479425] Call Trace:
[ 411.479428] <TASK>
[ 411.479432] dump_stack_lvl+0x49/0x63
[ 411.479444] print_report+0x171/0x4a8
[ 411.479452] ? kasan_complete_mode_report_info+0x3c/0x200
[ 411.479463] ? init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd]
[ 411.479497] kasan_report+0xb4/0x130
[ 411.479503] ? init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd]
[ 411.479537] kasan_check_range+0x149/0x1e0
[ 411.479543] memcpy+0x24/0x70
[ 411.479550] init_smb2_rsp_hdr+0x1e2/0x1f4 [ksmbd]
[ 411.479585] handle_ksmbd_work+0x109/0x760 [ksmbd]
[ 411.479616] ? _raw_spin_unlock_irqrestore+0x50/0x50
[ 411.479624] ? smb3_encrypt_resp+0x340/0x340 [ksmbd]
[ 411.479656] process_one_work+0x49c/0x790
[ 411.479667] worker_thread+0x2b1/0x6e0
[ 411.479674] ? process_one_work+0x790/0x790
[ 411.479680] kthread+0x177/0x1b0
[ 411.479686] ? kthread_complete_and_exit+0x30/0x30
[ 411.479692] ret_from_fork+0x22/0x30
[ 411.479702] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
pstore: Avoid kcore oops by vmap()ing with VM_IOREMAP
An oops can be induced by running 'cat /proc/kcore > /dev/null' on
devices using pstore with the ram backend because kmap_atomic() assumes
lowmem pages are accessible with __va().
Unable to handle kernel paging request at virtual address ffffff807ff2b000
Mem abort info:
ESR = 0x96000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000081d87000
[ffffff807ff2b000] pgd=180000017fe18003, p4d=180000017fe18003, pud=180000017fe18003, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Modules linked in: dm_integrity
CPU: 7 PID: 21179 Comm: perf Not tainted 5.15.67-10882-ge4eb2eb988cd #1 baa443fb8e8477896a370b31a821eb2009f9bfba
Hardware name: Google Lazor (rev3 - 8) (DT)
pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __memcpy+0x110/0x260
lr : vread+0x194/0x294
sp : ffffffc013ee39d0
x29: ffffffc013ee39f0 x28: 0000000000001000 x27: ffffff807ff2b000
x26: 0000000000001000 x25: ffffffc0085a2000 x24: ffffff802d4b3000
x23: ffffff80f8a60000 x22: ffffff802d4b3000 x21: ffffffc0085a2000
x20: ffffff8080b7bc68 x19: 0000000000001000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffffd3073f2e60
x14: ffffffffad588000 x13: 0000000000000000 x12: 0000000000000001
x11: 00000000000001a2 x10: 00680000fff2bf0b x9 : 03fffffff807ff2b
x8 : 0000000000000001 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffffff802d4b4000 x4 : ffffff807ff2c000 x3 : ffffffc013ee3a78
x2 : 0000000000001000 x1 : ffffff807ff2b000 x0 : ffffff802d4b3000
Call trace:
__memcpy+0x110/0x260
read_kcore+0x584/0x778
proc_reg_read+0xb4/0xe4
During early boot, memblock reserves the pages for the ramoops reserved
memory node in DT that would otherwise be part of the direct lowmem
mapping. Pstore's ram backend reuses those reserved pages to change the
memory type (writeback or non-cached) by passing the pages to vmap()
(see pfn_to_page() usage in persistent_ram_vmap() for more details) with
specific flags. When read_kcore() starts iterating over the vmalloc
region, it runs over the virtual address that vmap() returned for
ramoops. In aligned_vread() the virtual address is passed to
vmalloc_to_page() which returns the page struct for the reserved lowmem
area. That lowmem page is passed to kmap_atomic(), which effectively
calls page_to_virt() that assumes a lowmem page struct must be directly
accessible with __va() and friends. These pages are mapped via vmap()
though, and the lowmem mapping was never made, so accessing them via the
lowmem virtual address oopses like above.
Let's side-step this problem by passing VM_IOREMAP to vmap(). This will
tell vread() to not include the ramoops region in the kcore. Instead the
area will look like a bunch of zeros. The alternative is to teach kmap()
about vmalloc areas that intersect with lowmem. Presumably such a change
isn't a one-liner, and there isn't much interest in inspecting the
ramoops region in kcore files anyway, so the most expedient route is
taken for now. |
| In the Linux kernel, the following vulnerability has been resolved:
net: broadcom: bcm4908_enet: update TX stats after actual transmission
Queueing packets doesn't guarantee their transmission. Update TX stats
after hardware confirms consuming submitted data.
This also fixes a possible race and NULL dereference.
bcm4908_enet_start_xmit() could try to access skb after freeing it in
the bcm4908_enet_poll_tx(). |
| In the Linux kernel, the following vulnerability has been resolved:
dm integrity: Fix UAF in dm_integrity_dtr()
Dm_integrity also has the same UAF problem when dm_resume()
and dm_destroy() are concurrent.
Therefore, cancelling timer again in dm_integrity_dtr(). |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Don't leak netobj memory when gss_read_proxy_verf() fails |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix a signed-integer-overflow bug in tcp_add_backlog()
The type of sk_rcvbuf and sk_sndbuf in struct sock is int, and
in tcp_add_backlog(), the variable limit is caculated by adding
sk_rcvbuf, sk_sndbuf and 64 * 1024, it may exceed the max value
of int and overflow. This patch reduces the limit budget by
halving the sndbuf to solve this issue since ACK packets are much
smaller than the payload. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix a credential leak in _nfs4_discover_trunking() |
| In the Linux kernel, the following vulnerability has been resolved:
of: overlay: fix null pointer dereferencing in find_dup_cset_node_entry() and find_dup_cset_prop()
When kmalloc() fail to allocate memory in kasprintf(), fn_1 or fn_2 will
be NULL, and strcmp() will cause null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: virtual_ncidev: Fix memory leak in virtual_nci_send()
skb should be free in virtual_nci_send(), otherwise kmemleak will report
memleak.
Steps for reproduction (simulated in qemu):
cd tools/testing/selftests/nci
make
./nci_dev
BUG: memory leak
unreferenced object 0xffff888107588000 (size 208):
comm "nci_dev", pid 206, jiffies 4294945376 (age 368.248s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000008d94c8fd>] __alloc_skb+0x1da/0x290
[<00000000278bc7f8>] nci_send_cmd+0xa3/0x350
[<0000000081256a22>] nci_reset_req+0x6b/0xa0
[<000000009e721112>] __nci_request+0x90/0x250
[<000000005d556e59>] nci_dev_up+0x217/0x5b0
[<00000000e618ce62>] nfc_dev_up+0x114/0x220
[<00000000981e226b>] nfc_genl_dev_up+0x94/0xe0
[<000000009bb03517>] genl_family_rcv_msg_doit.isra.14+0x228/0x2d0
[<00000000b7f8c101>] genl_rcv_msg+0x35c/0x640
[<00000000c94075ff>] netlink_rcv_skb+0x11e/0x350
[<00000000440cfb1e>] genl_rcv+0x24/0x40
[<0000000062593b40>] netlink_unicast+0x43f/0x640
[<000000001d0b13cc>] netlink_sendmsg+0x73a/0xbf0
[<000000003272487f>] __sys_sendto+0x324/0x370
[<00000000ef9f1747>] __x64_sys_sendto+0xdd/0x1b0
[<000000001e437841>] do_syscall_64+0x3f/0x90 |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Finish converting the NFSv2 GETACL result encoder
The xdr_stream conversion inadvertently left some code that set the
page_len of the send buffer. The XDR stream encoders should handle
this automatically now.
This oversight adds garbage past the end of the Reply message.
Clients typically ignore the garbage, but NFSD does not need to send
it, as it leaks stale memory contents onto the wire. |