| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
hte: tegra-194: Fix off by one in tegra_hte_map_to_line_id()
The "map_sz" is the number of elements in the "m" array so the >
comparison needs to be changed to >= to prevent an out of bounds
read. |
| In the Linux kernel, the following vulnerability has been resolved:
mlx5: fix skb leak while fifo resync and push
During ptp resync operation SKBs were poped from the fifo but were never
freed neither by napi_consume nor by dev_kfree_skb_any. Add call to
napi_consume_skb to properly free SKBs.
Another leak was happening because mlx5e_skb_fifo_has_room() had an error
in the check. Comparing free running counters works well unless C promotes
the types to something wider than the counter. In this case counters are
u16 but the result of the substraction is promouted to int and it causes
wrong result (negative value) of the check when producer have already
overlapped but consumer haven't yet. Explicit cast to u16 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: raa215300: Fix resource leak in case of error
The clk_register_clkdev() allocates memory by calling vclkdev_alloc() and
this memory is not freed in the error path. Similarly, resources allocated
by clk_register_fixed_rate() are not freed in the error path.
Fix these issues by using devm_clk_hw_register_fixed_rate() and
devm_clk_hw_register_clkdev().
After this, the static variable clk is not needed. Replace it withÂ
local variable hw in probe() and drop calling clk_unregister_fixed_rate()
from raa215300_rtc_unregister_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_eth_soc: fix possible NULL pointer dereference in mtk_hwlro_get_fdir_all()
rule_locs is allocated in ethtool_get_rxnfc and the size is determined by
rule_cnt from user space. So rule_cnt needs to be check before using
rule_locs to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix potential panic dues to unprotected smc_llc_srv_add_link()
There is a certain chance to trigger the following panic:
PID: 5900 TASK: ffff88c1c8af4100 CPU: 1 COMMAND: "kworker/1:48"
#0 [ffff9456c1cc79a0] machine_kexec at ffffffff870665b7
#1 [ffff9456c1cc79f0] __crash_kexec at ffffffff871b4c7a
#2 [ffff9456c1cc7ab0] crash_kexec at ffffffff871b5b60
#3 [ffff9456c1cc7ac0] oops_end at ffffffff87026ce7
#4 [ffff9456c1cc7ae0] page_fault_oops at ffffffff87075715
#5 [ffff9456c1cc7b58] exc_page_fault at ffffffff87ad0654
#6 [ffff9456c1cc7b80] asm_exc_page_fault at ffffffff87c00b62
[exception RIP: ib_alloc_mr+19]
RIP: ffffffffc0c9cce3 RSP: ffff9456c1cc7c38 RFLAGS: 00010202
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000004
RDX: 0000000000000010 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff88c1ea281d00 R8: 000000020a34ffff R9: ffff88c1350bbb20
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000010 R14: ffff88c1ab040a50 R15: ffff88c1ea281d00
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffff9456c1cc7c60] smc_ib_get_memory_region at ffffffffc0aff6df [smc]
#8 [ffff9456c1cc7c88] smcr_buf_map_link at ffffffffc0b0278c [smc]
#9 [ffff9456c1cc7ce0] __smc_buf_create at ffffffffc0b03586 [smc]
The reason here is that when the server tries to create a second link,
smc_llc_srv_add_link() has no protection and may add a new link to
link group. This breaks the security environment protected by
llc_conf_mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/DOE: Fix destroy_work_on_stack() race
The following debug object splat was observed in testing:
ODEBUG: free active (active state 0) object: 0000000097d23782 object type: work_struct hint: doe_statemachine_work+0x0/0x510
WARNING: CPU: 1 PID: 71 at lib/debugobjects.c:514 debug_print_object+0x7d/0xb0
...
Workqueue: pci 0000:36:00.0 DOE [1 doe_statemachine_work
RIP: 0010:debug_print_object+0x7d/0xb0
...
Call Trace:
? debug_print_object+0x7d/0xb0
? __pfx_doe_statemachine_work+0x10/0x10
debug_object_free.part.0+0x11b/0x150
doe_statemachine_work+0x45e/0x510
process_one_work+0x1d4/0x3c0
This occurs because destroy_work_on_stack() was called after signaling
the completion in the calling thread. This creates a race between
destroy_work_on_stack() and the task->work struct going out of scope in
pci_doe().
Signal the work complete after destroying the work struct. This is safe
because signal_task_complete() is the final thing the work item does and
the workqueue code is careful not to access the work struct after. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data races around sk->sk_shutdown.
KCSAN found a data race around sk->sk_shutdown where unix_release_sock()
and unix_shutdown() update it under unix_state_lock(), OTOH unix_poll()
and unix_dgram_poll() read it locklessly.
We need to annotate the writes and reads with WRITE_ONCE() and READ_ONCE().
BUG: KCSAN: data-race in unix_poll / unix_release_sock
write to 0xffff88800d0f8aec of 1 bytes by task 264 on cpu 0:
unix_release_sock+0x75c/0x910 net/unix/af_unix.c:631
unix_release+0x59/0x80 net/unix/af_unix.c:1042
__sock_release+0x7d/0x170 net/socket.c:653
sock_close+0x19/0x30 net/socket.c:1397
__fput+0x179/0x5e0 fs/file_table.c:321
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x116/0x1a0 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204
__syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline]
syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297
do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x72/0xdc
read to 0xffff88800d0f8aec of 1 bytes by task 222 on cpu 1:
unix_poll+0xa3/0x2a0 net/unix/af_unix.c:3170
sock_poll+0xcf/0x2b0 net/socket.c:1385
vfs_poll include/linux/poll.h:88 [inline]
ep_item_poll.isra.0+0x78/0xc0 fs/eventpoll.c:855
ep_send_events fs/eventpoll.c:1694 [inline]
ep_poll fs/eventpoll.c:1823 [inline]
do_epoll_wait+0x6c4/0xea0 fs/eventpoll.c:2258
__do_sys_epoll_wait fs/eventpoll.c:2270 [inline]
__se_sys_epoll_wait fs/eventpoll.c:2265 [inline]
__x64_sys_epoll_wait+0xcc/0x190 fs/eventpoll.c:2265
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
value changed: 0x00 -> 0x03
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 222 Comm: dbus-broker Not tainted 6.3.0-rc7-02330-gca6270c12e20 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Add check for kmemdup
Since the kmemdup may return NULL pointer,
it should be better to add check for the return value
in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
net/net_failover: fix txq exceeding warning
The failover txq is inited as 16 queues.
when a packet is transmitted from the failover device firstly,
the failover device will select the queue which is returned from
the primary device if the primary device is UP and running.
If the primary device txq is bigger than the default 16,
it can lead to the following warning:
eth0 selects TX queue 18, but real number of TX queues is 16
The warning backtrace is:
[ 32.146376] CPU: 18 PID: 9134 Comm: chronyd Tainted: G E 6.2.8-1.el7.centos.x86_64 #1
[ 32.147175] Hardware name: Red Hat KVM, BIOS 1.10.2-3.el7_4.1 04/01/2014
[ 32.147730] Call Trace:
[ 32.147971] <TASK>
[ 32.148183] dump_stack_lvl+0x48/0x70
[ 32.148514] dump_stack+0x10/0x20
[ 32.148820] netdev_core_pick_tx+0xb1/0xe0
[ 32.149180] __dev_queue_xmit+0x529/0xcf0
[ 32.149533] ? __check_object_size.part.0+0x21c/0x2c0
[ 32.149967] ip_finish_output2+0x278/0x560
[ 32.150327] __ip_finish_output+0x1fe/0x2f0
[ 32.150690] ip_finish_output+0x2a/0xd0
[ 32.151032] ip_output+0x7a/0x110
[ 32.151337] ? __pfx_ip_finish_output+0x10/0x10
[ 32.151733] ip_local_out+0x5e/0x70
[ 32.152054] ip_send_skb+0x19/0x50
[ 32.152366] udp_send_skb.isra.0+0x163/0x3a0
[ 32.152736] udp_sendmsg+0xba8/0xec0
[ 32.153060] ? __folio_memcg_unlock+0x25/0x60
[ 32.153445] ? __pfx_ip_generic_getfrag+0x10/0x10
[ 32.153854] ? sock_has_perm+0x85/0xa0
[ 32.154190] inet_sendmsg+0x6d/0x80
[ 32.154508] ? inet_sendmsg+0x6d/0x80
[ 32.154838] sock_sendmsg+0x62/0x70
[ 32.155152] ____sys_sendmsg+0x134/0x290
[ 32.155499] ___sys_sendmsg+0x81/0xc0
[ 32.155828] ? _get_random_bytes.part.0+0x79/0x1a0
[ 32.156240] ? ip4_datagram_release_cb+0x5f/0x1e0
[ 32.156649] ? get_random_u16+0x69/0xf0
[ 32.156989] ? __fget_light+0xcf/0x110
[ 32.157326] __sys_sendmmsg+0xc4/0x210
[ 32.157657] ? __sys_connect+0xb7/0xe0
[ 32.157995] ? __audit_syscall_entry+0xce/0x140
[ 32.158388] ? syscall_trace_enter.isra.0+0x12c/0x1a0
[ 32.158820] __x64_sys_sendmmsg+0x24/0x30
[ 32.159171] do_syscall_64+0x38/0x90
[ 32.159493] entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fix that by reducing txq number as the non-existent primary-dev does. |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: fix memory leak in wx_setup_rx_resources
When wx_alloc_page_pool() failed in wx_setup_rx_resources(), it doesn't
release DMA buffer. Add dma_free_coherent() in the error path to release
the DMA buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: fix potential null-ptr-deref in device_add()
I got the following null-ptr-deref report while doing fault injection test:
BUG: kernel NULL pointer dereference, address: 0000000000000058
CPU: 2 PID: 278 Comm: 37-i2c-ds2482 Tainted: G B W N 6.1.0-rc3+
RIP: 0010:klist_put+0x2d/0xd0
Call Trace:
<TASK>
klist_remove+0xf1/0x1c0
device_release_driver_internal+0x196/0x210
bus_remove_device+0x1bd/0x240
device_add+0xd3d/0x1100
w1_add_master_device+0x476/0x490 [wire]
ds2482_probe+0x303/0x3e0 [ds2482]
This is how it happened:
w1_alloc_dev()
// The dev->driver is set to w1_master_driver.
memcpy(&dev->dev, device, sizeof(struct device));
device_add()
bus_add_device()
dpm_sysfs_add() // It fails, calls bus_remove_device.
// error path
bus_remove_device()
// The dev->driver is not null, but driver is not bound.
__device_release_driver()
klist_remove(&dev->p->knode_driver) <-- It causes null-ptr-deref.
// normal path
bus_probe_device() // It's not called yet.
device_bind_driver()
If dev->driver is set, in the error path after calling bus_add_device()
in device_add(), bus_remove_device() is called, then the device will be
detached from driver. But device_bind_driver() is not called yet, so it
causes null-ptr-deref while access the 'knode_driver'. To fix this, set
dev->driver to null in the error path before calling bus_remove_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: quark_dts: fix error pointer dereference
If alloc_soc_dts() fails, then we can just return. Trying to free
"soc_dts" will lead to an Oops. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Get source vCPUs from source VM for SEV-ES intrahost migration
Fix a goof where KVM tries to grab source vCPUs from the destination VM
when doing intrahost migration. Grabbing the wrong vCPU not only hoses
the guest, it also crashes the host due to the VMSA pointer being left
NULL.
BUG: unable to handle page fault for address: ffffe38687000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 39 PID: 17143 Comm: sev_migrate_tes Tainted: GO 6.5.0-smp--fff2e47e6c3b-next #151
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.28.0 07/10/2023
RIP: 0010:__free_pages+0x15/0xd0
RSP: 0018:ffff923fcf6e3c78 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffe38687000000 RCX: 0000000000000100
RDX: 0000000000000100 RSI: 0000000000000000 RDI: ffffe38687000000
RBP: ffff923fcf6e3c88 R08: ffff923fcafb0000 R09: 0000000000000000
R10: 0000000000000000 R11: ffffffff83619b90 R12: ffff923fa9540000
R13: 0000000000080007 R14: ffff923f6d35d000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff929d0d7c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffe38687000000 CR3: 0000005224c34005 CR4: 0000000000770ee0
PKRU: 55555554
Call Trace:
<TASK>
sev_free_vcpu+0xcb/0x110 [kvm_amd]
svm_vcpu_free+0x75/0xf0 [kvm_amd]
kvm_arch_vcpu_destroy+0x36/0x140 [kvm]
kvm_destroy_vcpus+0x67/0x100 [kvm]
kvm_arch_destroy_vm+0x161/0x1d0 [kvm]
kvm_put_kvm+0x276/0x560 [kvm]
kvm_vm_release+0x25/0x30 [kvm]
__fput+0x106/0x280
____fput+0x12/0x20
task_work_run+0x86/0xb0
do_exit+0x2e3/0x9c0
do_group_exit+0xb1/0xc0
__x64_sys_exit_group+0x1b/0x20
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
CR2: ffffe38687000000 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: xsk: Fix invalid buffer access for legacy rq
The below crash can be encountered when using xdpsock in rx mode for
legacy rq: the buffer gets released in the XDP_REDIRECT path, and then
once again in the driver. This fix sets the flag to avoid releasing on
the driver side.
XSK handling of buffers for legacy rq was relying on the caller to set
the skip release flag. But the referenced fix started using fragment
counts for pages instead of the skip flag.
Crash log:
general protection fault, probably for non-canonical address 0xffff8881217e3a: 0000 [#1] SMP
CPU: 0 PID: 14 Comm: ksoftirqd/0 Not tainted 6.5.0-rc1+ #31
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:bpf_prog_03b13f331978c78c+0xf/0x28
Code: ...
RSP: 0018:ffff88810082fc98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888138404901 RCX: c0ffffc900027cbc
RDX: ffffffffa000b514 RSI: 00ffff8881217e32 RDI: ffff888138404901
RBP: ffff88810082fc98 R08: 0000000000091100 R09: 0000000000000006
R10: 0000000000000800 R11: 0000000000000800 R12: ffffc9000027a000
R13: ffff8881217e2dc0 R14: ffff8881217e2910 R15: ffff8881217e2f00
FS: 0000000000000000(0000) GS:ffff88852c800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000564cb2e2cde0 CR3: 000000010e603004 CR4: 0000000000370eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? die_addr+0x32/0x80
? exc_general_protection+0x192/0x390
? asm_exc_general_protection+0x22/0x30
? 0xffffffffa000b514
? bpf_prog_03b13f331978c78c+0xf/0x28
mlx5e_xdp_handle+0x48/0x670 [mlx5_core]
? dev_gro_receive+0x3b5/0x6e0
mlx5e_xsk_skb_from_cqe_linear+0x6e/0x90 [mlx5_core]
mlx5e_handle_rx_cqe+0x55/0x100 [mlx5_core]
mlx5e_poll_rx_cq+0x87/0x6e0 [mlx5_core]
mlx5e_napi_poll+0x45e/0x6b0 [mlx5_core]
__napi_poll+0x25/0x1a0
net_rx_action+0x28a/0x300
__do_softirq+0xcd/0x279
? sort_range+0x20/0x20
run_ksoftirqd+0x1a/0x20
smpboot_thread_fn+0xa2/0x130
kthread+0xc9/0xf0
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK>
Modules linked in: mlx5_ib mlx5_core rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter overlay zram zsmalloc fuse [last unloaded: mlx5_core]
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
bcache: fixup btree_cache_wait list damage
We get a kernel crash about "list_add corruption. next->prev should be
prev (ffff9c801bc01210), but was ffff9c77b688237c.
(next=ffffae586d8afe68)."
crash> struct list_head 0xffff9c801bc01210
struct list_head {
next = 0xffffae586d8afe68,
prev = 0xffffae586d8afe68
}
crash> struct list_head 0xffff9c77b688237c
struct list_head {
next = 0x0,
prev = 0x0
}
crash> struct list_head 0xffffae586d8afe68
struct list_head struct: invalid kernel virtual address: ffffae586d8afe68 type: "gdb_readmem_callback"
Cannot access memory at address 0xffffae586d8afe68
[230469.019492] Call Trace:
[230469.032041] prepare_to_wait+0x8a/0xb0
[230469.044363] ? bch_btree_keys_free+0x6c/0xc0 [escache]
[230469.056533] mca_cannibalize_lock+0x72/0x90 [escache]
[230469.068788] mca_alloc+0x2ae/0x450 [escache]
[230469.080790] bch_btree_node_get+0x136/0x2d0 [escache]
[230469.092681] bch_btree_check_thread+0x1e1/0x260 [escache]
[230469.104382] ? finish_wait+0x80/0x80
[230469.115884] ? bch_btree_check_recurse+0x1a0/0x1a0 [escache]
[230469.127259] kthread+0x112/0x130
[230469.138448] ? kthread_flush_work_fn+0x10/0x10
[230469.149477] ret_from_fork+0x35/0x40
bch_btree_check_thread() and bch_dirty_init_thread() may call
mca_cannibalize() to cannibalize other cached btree nodes. Only one thread
can do it at a time, so the op of other threads will be added to the
btree_cache_wait list.
We must call finish_wait() to remove op from btree_cache_wait before free
it's memory address. Otherwise, the list will be damaged. Also should call
bch_cannibalize_unlock() to release the btree_cache_alloc_lock and wake_up
other waiters. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix memleak of md thread
In raid10_run(), if setup_conf() succeed and raid10_run() failed before
setting 'mddev->thread', then in the error path 'conf->thread' is not
freed.
Fix the problem by setting 'mddev->thread' right after setup_conf(). |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: spi-nor: Fix shift-out-of-bounds in spi_nor_set_erase_type
spi_nor_set_erase_type() was used either to set or to mask out an erase
type. When we used it to mask out an erase type a shift-out-of-bounds
was hit:
UBSAN: shift-out-of-bounds in drivers/mtd/spi-nor/core.c:2237:24
shift exponent 4294967295 is too large for 32-bit type 'int'
The setting of the size_{shift, mask} and of the opcode are unnecessary
when the erase size is zero, as throughout the code just the erase size
is considered to determine whether an erase type is supported or not.
Setting the opcode to 0xFF was wrong too as nobody guarantees that 0xFF
is an unused opcode. Thus when masking out an erase type, just set the
erase size to zero. This will fix the shift-out-of-bounds.
[ta: refine changes, new commit message, fix compilation error] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: avoid referencing uninit memory in ath9k_wmi_ctrl_rx
For the reasons also described in commit b383e8abed41 ("wifi: ath9k: avoid
uninit memory read in ath9k_htc_rx_msg()"), ath9k_htc_rx_msg() should
validate pkt_len before accessing the SKB.
For example, the obtained SKB may have been badly constructed with
pkt_len = 8. In this case, the SKB can only contain a valid htc_frame_hdr
but after being processed in ath9k_htc_rx_msg() and passed to
ath9k_wmi_ctrl_rx() endpoint RX handler, it is expected to have a WMI
command header which should be located inside its data payload.
Implement sanity checking inside ath9k_wmi_ctrl_rx(). Otherwise, uninit
memory can be referenced.
Tested on Qualcomm Atheros Communications AR9271 802.11n .
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: imx: disable Ageing Timer interrupt request irq
There maybe pending USR interrupt before requesting irq, however
uart_add_one_port has not executed, so there will be kernel panic:
[ 0.795668] Unable to handle kernel NULL pointer dereference at virtual addre
ss 0000000000000080
[ 0.802701] Mem abort info:
[ 0.805367] ESR = 0x0000000096000004
[ 0.808950] EC = 0x25: DABT (current EL), IL = 32 bits
[ 0.814033] SET = 0, FnV = 0
[ 0.816950] EA = 0, S1PTW = 0
[ 0.819950] FSC = 0x04: level 0 translation fault
[ 0.824617] Data abort info:
[ 0.827367] ISV = 0, ISS = 0x00000004
[ 0.831033] CM = 0, WnR = 0
[ 0.833866] [0000000000000080] user address but active_mm is swapper
[ 0.839951] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 0.845953] Modules linked in:
[ 0.848869] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.1+g56321e101aca #1
[ 0.855617] Hardware name: Freescale i.MX8MP EVK (DT)
[ 0.860452] pstate: 000000c5 (nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 0.867117] pc : __imx_uart_rxint.constprop.0+0x11c/0x2c0
[ 0.872283] lr : imx_uart_int+0xf8/0x1ec
The issue only happends in the inmate linux when Jailhouse hypervisor
enabled. The test procedure is:
while true; do
jailhouse enable imx8mp.cell
jailhouse cell linux xxxx
sleep 10
jailhouse cell destroy 1
jailhouse disable
sleep 5
done
And during the upper test, press keys to the 2nd linux console.
When `jailhouse cell destroy 1`, the 2nd linux has no chance to put
the uart to a quiese state, so USR1/2 may has pending interrupts. Then
when `jailhosue cell linux xx` to start 2nd linux again, the issue
trigger.
In order to disable irqs before requesting them, both UCR1 and UCR2 irqs
should be disabled, so here fix that, disable the Ageing Timer interrupt
in UCR2 as UCR1 does. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "drm/msm: Add missing check and destroy for alloc_ordered_workqueue"
This reverts commit 643b7d0869cc7f1f7a5ac7ca6bd25d88f54e31d0.
A recent patch that tried to fix up the msm_drm_init() paths with
respect to the workqueue but only ended up making things worse:
First, the newly added calls to msm_drm_uninit() on early errors would
trigger NULL-pointer dereferences, for example, as the kms pointer would
not have been initialised. (Note that these paths were also modified by
a second broken error handling patch which in effect cancelled out this
part when merged.)
Second, the newly added allocation sanity check would still leak the
previously allocated drm device.
Instead of trying to salvage what was badly broken (and clearly not
tested), let's revert the bad commit so that clean and backportable
fixes can be added in its place.
Patchwork: https://patchwork.freedesktop.org/patch/525107/ |