| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix memleak in seg6_hmac_init_algo
seg6_hmac_init_algo returns without cleaning up the previous allocations
if one fails, so it's going to leak all that memory and the crypto tfms.
Update seg6_hmac_exit to only free the memory when allocated, so we can
reuse the code directly. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: dvp: Assign ->num before accessing ->hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer about the number
of elements in hws, so that it can warn when hws is accessed out of
bounds. As noted in that change, the __counted_by member must be
initialized with the number of elements before the first array access
happens, otherwise there will be a warning from each access prior to the
initialization because the number of elements is zero. This occurs in
clk_dvp_probe() due to ->num being assigned after ->hws has been
accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/bcm/clk-bcm2711-dvp.c:59:2
index 0 is out of range for type 'struct clk_hw *[] __counted_by(num)' (aka 'struct clk_hw *[]')
Move the ->num initialization to before the first access of ->hws, which
clears up the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: carl9170: re-fix fortified-memset warning
The carl9170_tx_release() function sometimes triggers a fortified-memset
warning in my randconfig builds:
In file included from include/linux/string.h:254,
from drivers/net/wireless/ath/carl9170/tx.c:40:
In function 'fortify_memset_chk',
inlined from 'carl9170_tx_release' at drivers/net/wireless/ath/carl9170/tx.c:283:2,
inlined from 'kref_put' at include/linux/kref.h:65:3,
inlined from 'carl9170_tx_put_skb' at drivers/net/wireless/ath/carl9170/tx.c:342:9:
include/linux/fortify-string.h:493:25: error: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
493 | __write_overflow_field(p_size_field, size);
Kees previously tried to avoid this by using memset_after(), but it seems
this does not fully address the problem. I noticed that the memset_after()
here is done on a different part of the union (status) than the original
cast was from (rate_driver_data), which may confuse the compiler.
Unfortunately, the memset_after() trick does not work on driver_rates[]
because that is part of an anonymous struct, and I could not get
struct_group() to do this either. Using two separate memset() calls
on the two members does address the warning though. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers/perf: hisi: hns3: Actually use devm_add_action_or_reset()
pci_alloc_irq_vectors() allocates an irq vector. When devm_add_action()
fails, the irq vector is not freed, which leads to a memory leak.
Replace the devm_add_action with devm_add_action_or_reset to ensure
the irq vector can be destroyed when it fails. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Modify the print level of CQE error
Too much print may lead to a panic in kernel. Change ibdev_err() to
ibdev_err_ratelimited(), and change the printing level of cqe dump
to debug level. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: fix potential memory leakage when reading chip temperature
Without this commit, reading chip temperature will cause memory leakage. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Fix kmemleak in rdma_core observed during blktests nvme/rdma use siw
When running blktests nvme/rdma, the following kmemleak issue will appear.
kmemleak: Kernel memory leak detector initialized (mempool available:36041)
kmemleak: Automatic memory scanning thread started
kmemleak: 2 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 8 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 17 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 4 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
unreferenced object 0xffff88855da53400 (size 192):
comm "rdma", pid 10630, jiffies 4296575922
hex dump (first 32 bytes):
37 00 00 00 00 00 00 00 c0 ff ff ff 1f 00 00 00 7...............
10 34 a5 5d 85 88 ff ff 10 34 a5 5d 85 88 ff ff .4.].....4.]....
backtrace (crc 47f66721):
[<ffffffff911251bd>] kmalloc_trace+0x30d/0x3b0
[<ffffffffc2640ff7>] alloc_gid_entry+0x47/0x380 [ib_core]
[<ffffffffc2642206>] add_modify_gid+0x166/0x930 [ib_core]
[<ffffffffc2643468>] ib_cache_update.part.0+0x6d8/0x910 [ib_core]
[<ffffffffc2644e1a>] ib_cache_setup_one+0x24a/0x350 [ib_core]
[<ffffffffc263949e>] ib_register_device+0x9e/0x3a0 [ib_core]
[<ffffffffc2a3d389>] 0xffffffffc2a3d389
[<ffffffffc2688cd8>] nldev_newlink+0x2b8/0x520 [ib_core]
[<ffffffffc2645fe3>] rdma_nl_rcv_msg+0x2c3/0x520 [ib_core]
[<ffffffffc264648c>]
rdma_nl_rcv_skb.constprop.0.isra.0+0x23c/0x3a0 [ib_core]
[<ffffffff9270e7b5>] netlink_unicast+0x445/0x710
[<ffffffff9270f1f1>] netlink_sendmsg+0x761/0xc40
[<ffffffff9249db29>] __sys_sendto+0x3a9/0x420
[<ffffffff9249dc8c>] __x64_sys_sendto+0xdc/0x1b0
[<ffffffff92db0ad3>] do_syscall_64+0x93/0x180
[<ffffffff92e00126>] entry_SYSCALL_64_after_hwframe+0x71/0x79
The root cause: rdma_put_gid_attr is not called when sgid_attr is set
to ERR_PTR(-ENODEV). |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/cs_dsp_ctl: Use private_free for control cleanup
Use the control private_free callback to free the associated data
block. This ensures that the memory won't leak, whatever way the
control gets destroyed.
The original implementation didn't actually remove the ALSA
controls in hda_cs_dsp_control_remove(). It only freed the internal
tracking structure. This meant it was possible to remove/unload the
amp driver while leaving its ALSA controls still present in the
soundcard. Obviously attempting to access them could cause segfaults
or at least dereferencing stale pointers. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: fix list corruption from reorder of WRITE ->lqueued
__blkcg_rstat_flush() can be run anytime, especially when blk_cgroup_bio_start
is being executed.
If WRITE of `->lqueued` is re-ordered with READ of 'bisc->lnode.next' in
the loop of __blkcg_rstat_flush(), `next_bisc` can be assigned with one
stat instance being added in blk_cgroup_bio_start(), then the local
list in __blkcg_rstat_flush() could be corrupted.
Fix the issue by adding one barrier. |
| In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: Fix memory leak in tpm2_key_encode()
'scratch' is never freed. Fix this by calling kfree() in the success, and
in the error case. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: intel-sdw-acpi: fix usage of device_get_named_child_node()
The documentation for device_get_named_child_node() mentions this
important point:
"
The caller is responsible for calling fwnode_handle_put() on the
returned fwnode pointer.
"
Add fwnode_handle_put() to avoid a leaked reference. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix missing memory barrier in tls_init
In tls_init(), a write memory barrier is missing, and store-store
reordering may cause NULL dereference in tls_{setsockopt,getsockopt}.
CPU0 CPU1
----- -----
// In tls_init()
// In tls_ctx_create()
ctx = kzalloc()
ctx->sk_proto = READ_ONCE(sk->sk_prot) -(1)
// In update_sk_prot()
WRITE_ONCE(sk->sk_prot, tls_prots) -(2)
// In sock_common_setsockopt()
READ_ONCE(sk->sk_prot)->setsockopt()
// In tls_{setsockopt,getsockopt}()
ctx->sk_proto->setsockopt() -(3)
In the above scenario, when (1) and (2) are reordered, (3) can observe
the NULL value of ctx->sk_proto, causing NULL dereference.
To fix it, we rely on rcu_assign_pointer() which implies the release
barrier semantic. By moving rcu_assign_pointer() after ctx->sk_proto is
initialized, we can ensure that ctx->sk_proto are visible when
changing sk->sk_prot. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix memory leak in hci_req_sync_complete()
In 'hci_req_sync_complete()', always free the previous sync
request state before assigning reference to a new one. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix transmit scheduler resource leak
Inorder to support shaping and scheduling, Upon class creation
Netdev driver allocates trasmit schedulers.
The previous patch which added support for Round robin scheduling has
a bug due to which driver is not freeing transmit schedulers post
class deletion.
This patch fixes the same. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix possible memory leak in bnxt_rdma_aux_device_init()
If ulp = kzalloc() fails, the allocated edev will leak because it is
not properly assigned and the cleanup path will not be able to free it.
Fix it by assigning it properly immediately after allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
net: bcmasp: fix memory leak when bringing down interface
When bringing down the TX rings we flush the rings but forget to
reclaimed the flushed packets. This leads to a memory leak since we
do not free the dma mapped buffers. This also leads to tx control
block corruption when bringing down the interface for power
management. |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak during rehash
The rehash delayed work migrates filters from one region to another.
This is done by iterating over all chunks (all the filters with the same
priority) in the region and in each chunk iterating over all the
filters.
If the migration fails, the code tries to migrate the filters back to
the old region. However, the rollback itself can also fail in which case
another migration will be erroneously performed. Besides the fact that
this ping pong is not a very good idea, it also creates a problem.
Each virtual chunk references two chunks: The currently used one
('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the
first holds the chunk we want to migrate filters to and the second holds
the chunk we are migrating filters from.
The code currently assumes - but does not verify - that the backup chunk
does not exist (NULL) if the currently used chunk does not reference the
target region. This assumption breaks when we are trying to rollback a
rollback, resulting in the backup chunk being overwritten and leaked
[1].
Fix by not rolling back a failed rollback and add a warning to avoid
future cases.
[1]
WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20
Modules linked in:
CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:parman_destroy+0x17/0x20
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_atcam_region_fini+0x19/0x60
mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work
The rehash delayed work is rescheduled with a delay if the number of
credits at end of the work is not negative as supposedly it means that
the migration ended. Otherwise, it is rescheduled immediately.
After "mlxsw: spectrum_acl_tcam: Fix possible use-after-free during
rehash" the above is no longer accurate as a non-negative number of
credits is no longer indicative of the migration being done. It can also
happen if the work encountered an error in which case the migration will
resume the next time the work is scheduled.
The significance of the above is that it is possible for the work to be
pending and associated with hints that were allocated when the migration
started. This leads to the hints being leaked [1] when the work is
canceled while pending as part of ACL region dismantle.
Fix by freeing the hints if hints are associated with a work that was
canceled while pending.
Blame the original commit since the reliance on not having a pending
work associated with hints is fragile.
[1]
unreferenced object 0xffff88810e7c3000 (size 256):
comm "kworker/0:16", pid 176, jiffies 4295460353
hex dump (first 32 bytes):
00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a.......
00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@...........
backtrace (crc 2544ddb9):
[<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0
[<000000004d9a1ad9>] objagg_hints_get+0x42/0x390
[<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400
[<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160
[<00000000e81fd734>] process_one_work+0x59c/0xf20
[<00000000ceee9e81>] worker_thread+0x799/0x12c0
[<00000000bda6fe39>] kthread+0x246/0x300
[<0000000070056d23>] ret_from_fork+0x34/0x70
[<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: qca: fix NULL-deref on non-serdev setup
Qualcomm ROME controllers can be registered from the Bluetooth line
discipline and in this case the HCI UART serdev pointer is NULL.
Add the missing sanity check to prevent a NULL-pointer dereference when
setup() is called for a non-serdev controller. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: Fix a memory leak related to the queue command DMA
This dma_alloc_coherent() is undone neither in the remove function, nor in
the error handling path of fsl_qdma_probe().
Switch to the managed version to fix both issues. |