Search Results (16689 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50701 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host SDIO may need addtional 511 bytes to align bus operation. If the tailroom of this skb is not big enough, we would access invalid memory region. For low level operation, increase skb size to keep valid memory access in SDIO host. Error message: [69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0 [69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451 [69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1 [69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300] [69.951] Call Trace: [69.951] <TASK> [69.952] dump_stack_lvl+0x49/0x63 [69.952] print_report+0x171/0x4a8 [69.952] kasan_report+0xb4/0x130 [69.952] kasan_check_range+0x149/0x1e0 [69.952] memcpy+0x24/0x70 [69.952] sg_copy_buffer+0xe9/0x1a0 [69.952] sg_copy_to_buffer+0x12/0x20 [69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300] [69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300] [69.952] process_one_work+0x7ee/0x1320 [69.952] worker_thread+0x53c/0x1240 [69.952] kthread+0x2b8/0x370 [69.952] ret_from_fork+0x1f/0x30 [69.952] </TASK> [69.952] Allocated by task 854: [69.952] kasan_save_stack+0x26/0x50 [69.952] kasan_set_track+0x25/0x30 [69.952] kasan_save_alloc_info+0x1b/0x30 [69.952] __kasan_kmalloc+0x87/0xa0 [69.952] __kmalloc_node_track_caller+0x63/0x150 [69.952] kmalloc_reserve+0x31/0xd0 [69.952] __alloc_skb+0xfc/0x2b0 [69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76] [69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76] [69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76] [69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib] [69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib] [69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common] [69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s] [69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common] [69.953] process_one_work+0x7ee/0x1320 [69.953] worker_thread+0x53c/0x1240 [69.953] kthread+0x2b8/0x370 [69.953] ret_from_fork+0x1f/0x30 [69.953] The buggy address belongs to the object at ffff88811c9ce800 which belongs to the cache kmalloc-2k of size 2048 [69.953] The buggy address is located 0 bytes to the right of 2048-byte region [ffff88811c9ce800, ffff88811c9cf000) [69.953] Memory state around the buggy address: [69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [69.953] ^ [69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
CVE-2022-50705 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/rw: defer fsnotify calls to task context We can't call these off the kiocb completion as that might be off soft/hard irq context. Defer the calls to when we process the task_work for this request. That avoids valid complaints like: stack backtrace: CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.0.0-rc6-syzkaller-00321-g105a36f3694e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_usage_bug kernel/locking/lockdep.c:3961 [inline] valid_state kernel/locking/lockdep.c:3973 [inline] mark_lock_irq kernel/locking/lockdep.c:4176 [inline] mark_lock.part.0.cold+0x18/0xd8 kernel/locking/lockdep.c:4632 mark_lock kernel/locking/lockdep.c:4596 [inline] mark_usage kernel/locking/lockdep.c:4527 [inline] __lock_acquire+0x11d9/0x56d0 kernel/locking/lockdep.c:5007 lock_acquire kernel/locking/lockdep.c:5666 [inline] lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631 __fs_reclaim_acquire mm/page_alloc.c:4674 [inline] fs_reclaim_acquire+0x115/0x160 mm/page_alloc.c:4688 might_alloc include/linux/sched/mm.h:271 [inline] slab_pre_alloc_hook mm/slab.h:700 [inline] slab_alloc mm/slab.c:3278 [inline] __kmem_cache_alloc_lru mm/slab.c:3471 [inline] kmem_cache_alloc+0x39/0x520 mm/slab.c:3491 fanotify_alloc_fid_event fs/notify/fanotify/fanotify.c:580 [inline] fanotify_alloc_event fs/notify/fanotify/fanotify.c:813 [inline] fanotify_handle_event+0x1130/0x3f40 fs/notify/fanotify/fanotify.c:948 send_to_group fs/notify/fsnotify.c:360 [inline] fsnotify+0xafb/0x1680 fs/notify/fsnotify.c:570 __fsnotify_parent+0x62f/0xa60 fs/notify/fsnotify.c:230 fsnotify_parent include/linux/fsnotify.h:77 [inline] fsnotify_file include/linux/fsnotify.h:99 [inline] fsnotify_access include/linux/fsnotify.h:309 [inline] __io_complete_rw_common+0x485/0x720 io_uring/rw.c:195 io_complete_rw+0x1a/0x1f0 io_uring/rw.c:228 iomap_dio_complete_work fs/iomap/direct-io.c:144 [inline] iomap_dio_bio_end_io+0x438/0x5e0 fs/iomap/direct-io.c:178 bio_endio+0x5f9/0x780 block/bio.c:1564 req_bio_endio block/blk-mq.c:695 [inline] blk_update_request+0x3fc/0x1300 block/blk-mq.c:825 scsi_end_request+0x7a/0x9a0 drivers/scsi/scsi_lib.c:541 scsi_io_completion+0x173/0x1f70 drivers/scsi/scsi_lib.c:971 scsi_complete+0x122/0x3b0 drivers/scsi/scsi_lib.c:1438 blk_complete_reqs+0xad/0xe0 block/blk-mq.c:1022 __do_softirq+0x1d3/0x9c6 kernel/softirq.c:571 invoke_softirq kernel/softirq.c:445 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:650 irq_exit_rcu+0x5/0x20 kernel/softirq.c:662 common_interrupt+0xa9/0xc0 arch/x86/kernel/irq.c:240
CVE-2025-68353 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: vxlan: prevent NULL deref in vxlan_xmit_one Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the following NULL dereference: BUG: kernel NULL pointer dereference, address: 0000000000000010 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:vxlan_xmit_one+0xbb3/0x1580 Call Trace: vxlan_xmit+0x429/0x610 dev_hard_start_xmit+0x55/0xa0 __dev_queue_xmit+0x6d0/0x7f0 ip_finish_output2+0x24b/0x590 ip_output+0x63/0x110 Mentioned commits changed the code path in vxlan_xmit_one and as a side effect the sock4/6 pointer validity checks in vxlan(6)_get_route were lost. Fix this by adding back checks. Since both commits being fixed were released in the same version (v6.7) and are strongly related, bundle the fixes in a single commit.
CVE-2025-68356 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Prevent recursive memory reclaim Function new_inode() returns a new inode with inode->i_mapping->gfp_mask set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so allocations in that address space can recurse into filesystem memory reclaim. We don't want that to happen because it can consume a significant amount of stack memory. Worse than that is that it can also deadlock: for example, in several places, gfs2_unstuff_dinode() is called inside filesystem transactions. This calls filemap_grab_folio(), which can allocate a new folio, which can trigger memory reclaim. If memory reclaim recurses into the filesystem and starts another transaction, a deadlock will ensue. To fix these kinds of problems, prevent memory reclaim from recursing into filesystem code by making sure that the gfp_mask of inode address spaces doesn't include __GFP_FS. The "meta" and resource group address spaces were already using GFP_NOFS as their gfp_mask (which doesn't include __GFP_FS). The default value of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To avoid being overly limiting, use the default value and only knock off the __GFP_FS flag. I'm not sure if this will actually make a difference, but it also shouldn't hurt. This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack overflows from page cache allocation"). Fixes xfstest generic/273.
CVE-2022-50706 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/ieee802154: don't warn zero-sized raw_sendmsg() syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1], for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting __dev_queue_xmit() with skb->len == 0. Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was able to return 0, don't call __dev_queue_xmit() if packet length is 0. ---------- #include <sys/socket.h> #include <netinet/in.h> int main(int argc, char *argv[]) { struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) }; struct iovec iov = { }; struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 }; sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0); return 0; } ---------- Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't redirect packets with invalid pkt_len") should be reverted, for skb->len == 0 was acceptable for at least PF_IEEE802154 socket.
CVE-2022-50707 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: virtio-crypto: fix memory leak in virtio_crypto_alg_skcipher_close_session() 'vc_ctrl_req' is alloced in virtio_crypto_alg_skcipher_close_session(), and should be freed in the invalid ctrl_status->status error handling case. Otherwise there is a memory leak.
CVE-2022-50698 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: da7219: Fix an error handling path in da7219_register_dai_clks() If clk_hw_register() fails, the corresponding clk should not be unregistered. To handle errors from loops, clean up partial iterations before doing the goto. So add a clk_hw_unregister(). Then use a while (--i >= 0) loop in the unwind section.
CVE-2022-50702 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vdpa_sim: fix possible memory leak in vdpasim_net_init() and vdpasim_blk_init() Inject fault while probing module, if device_register() fails in vdpasim_net_init() or vdpasim_blk_init(), but the refcount of kobject is not decreased to 0, the name allocated in dev_set_name() is leaked. Fix this by calling put_device(), so that name can be freed in callback function kobject_cleanup(). (vdpa_sim_net) unreferenced object 0xffff88807eebc370 (size 16): comm "modprobe", pid 3848, jiffies 4362982860 (age 18.153s) hex dump (first 16 bytes): 76 64 70 61 73 69 6d 5f 6e 65 74 00 6b 6b 6b a5 vdpasim_net.kkk. backtrace: [<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150 [<ffffffff81731d53>] kstrdup+0x33/0x60 [<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110 [<ffffffff82d87aab>] dev_set_name+0xab/0xe0 [<ffffffff82d91a23>] device_add+0xe3/0x1a80 [<ffffffffa0270013>] 0xffffffffa0270013 [<ffffffff81001c27>] do_one_initcall+0x87/0x2e0 [<ffffffff813739cb>] do_init_module+0x1ab/0x640 [<ffffffff81379d20>] load_module+0x5d00/0x77f0 [<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0 [<ffffffff83c4d505>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 (vdpa_sim_blk) unreferenced object 0xffff8881070c1250 (size 16): comm "modprobe", pid 6844, jiffies 4364069319 (age 17.572s) hex dump (first 16 bytes): 76 64 70 61 73 69 6d 5f 62 6c 6b 00 6b 6b 6b a5 vdpasim_blk.kkk. backtrace: [<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150 [<ffffffff81731d53>] kstrdup+0x33/0x60 [<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110 [<ffffffff82d87aab>] dev_set_name+0xab/0xe0 [<ffffffff82d91a23>] device_add+0xe3/0x1a80 [<ffffffffa0220013>] 0xffffffffa0220013 [<ffffffff81001c27>] do_one_initcall+0x87/0x2e0 [<ffffffff813739cb>] do_init_module+0x1ab/0x640 [<ffffffff81379d20>] load_module+0x5d00/0x77f0 [<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0 [<ffffffff83c4d505>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2022-50703 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: smsm: Fix refcount leak bugs in qcom_smsm_probe() There are two refcount leak bugs in qcom_smsm_probe(): (1) The 'local_node' is escaped out from for_each_child_of_node() as the break of iteration, we should call of_node_put() for it in error path or when it is not used anymore. (2) The 'node' is escaped out from for_each_available_child_of_node() as the 'goto', we should call of_node_put() for it in goto target.
CVE-2022-50704 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: USB: gadget: Fix use-after-free during usb config switch In the process of switching USB config from rndis to other config, if the hardware does not support the ->pullup callback, or the hardware encounters a low probability fault, both of them may cause the ->pullup callback to fail, which will then cause a system panic (use after free). The gadget drivers sometimes need to be unloaded regardless of the hardware's behavior. Analysis as follows: ======================================================================= (1) write /config/usb_gadget/g1/UDC "none" gether_disconnect+0x2c/0x1f8 rndis_disable+0x4c/0x74 composite_disconnect+0x74/0xb0 configfs_composite_disconnect+0x60/0x7c usb_gadget_disconnect+0x70/0x124 usb_gadget_unregister_driver+0xc8/0x1d8 gadget_dev_desc_UDC_store+0xec/0x1e4 (2) rm /config/usb_gadget/g1/configs/b.1/f1 rndis_deregister+0x28/0x54 rndis_free+0x44/0x7c usb_put_function+0x14/0x1c config_usb_cfg_unlink+0xc4/0xe0 configfs_unlink+0x124/0x1c8 vfs_unlink+0x114/0x1dc (3) rmdir /config/usb_gadget/g1/functions/rndis.gs4 panic+0x1fc/0x3d0 do_page_fault+0xa8/0x46c do_mem_abort+0x3c/0xac el1_sync_handler+0x40/0x78 0xffffff801138f880 rndis_close+0x28/0x34 eth_stop+0x74/0x110 dev_close_many+0x48/0x194 rollback_registered_many+0x118/0x814 unregister_netdev+0x20/0x30 gether_cleanup+0x1c/0x38 rndis_attr_release+0xc/0x14 kref_put+0x74/0xb8 configfs_rmdir+0x314/0x374 If gadget->ops->pullup() return an error, function rndis_close() will be called, then it will causes a use-after-free problem. =======================================================================
CVE-2025-68350 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: exfat: fix divide-by-zero in exfat_allocate_bitmap The variable max_ra_count can be 0 in exfat_allocate_bitmap(), which causes a divide-by-zero error in the subsequent modulo operation (i % max_ra_count), leading to a system crash. When max_ra_count is 0, it means that readahead is not used. This patch load the bitmap without readahead.
CVE-2022-50711 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: mtk_eth_soc: fix possible memory leak in mtk_probe() If mtk_wed_add_hw() has been called, mtk_wed_exit() needs be called in error path or removing module to free the memory allocated in mtk_wed_add_hw().
CVE-2023-54019 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/psi: use kernfs polling functions for PSI trigger polling Destroying psi trigger in cgroup_file_release causes UAF issues when a cgroup is removed from under a polling process. This is happening because cgroup removal causes a call to cgroup_file_release while the actual file is still alive. Destroying the trigger at this point would also destroy its waitqueue head and if there is still a polling process on that file accessing the waitqueue, it will step on the freed pointer: do_select vfs_poll do_rmdir cgroup_rmdir kernfs_drain_open_files cgroup_file_release cgroup_pressure_release psi_trigger_destroy wake_up_pollfree(&t->event_wait) // vfs_poll is unblocked synchronize_rcu kfree(t) poll_freewait -> UAF access to the trigger's waitqueue head Patch [1] fixed this issue for epoll() case using wake_up_pollfree(), however the same issue exists for synchronous poll() case. The root cause of this issue is that the lifecycles of the psi trigger's waitqueue and of the file associated with the trigger are different. Fix this by using kernfs_generic_poll function when polling on cgroup-specific psi triggers. It internally uses kernfs_open_node->poll waitqueue head with its lifecycle tied to the file's lifecycle. This also renders the fix in [1] obsolete, so revert it. [1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()")
CVE-2023-54022 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix potential memory leaks at error path for UMP open The allocation and initialization errors at alloc_midi_urbs() that is called at MIDI 2.0 / UMP device are supposed to be handled at the caller side by invoking free_midi_urbs(). However, free_midi_urbs() loops only for ep->num_urbs entries, and since ep->num_entries wasn't updated yet at the allocation / init error in alloc_midi_urbs(), this entry won't be released. The intention of free_midi_urbs() is to release the whole elements, so change the loop size to NUM_URBS to scan over all elements for fixing the missed releases. Also, the call of free_midi_urbs() is missing at snd_usb_midi_v2_open(). Although it'll be released later at reopen/close or disconnection, it's better to release immediately at the error path.
CVE-2023-54012 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: fix stack overflow when LRO is disabled for virtual interfaces When the virtual interface's feature is updated, it synchronizes the updated feature for its own lower interface. This propagation logic should be worked as the iteration, not recursively. But it works recursively due to the netdev notification unexpectedly. This problem occurs when it disables LRO only for the team and bonding interface type. team0 | +------+------+-----+-----+ | | | | | team1 team2 team3 ... team200 If team0's LRO feature is updated, it generates the NETDEV_FEAT_CHANGE event to its own lower interfaces(team1 ~ team200). It is worked by netdev_sync_lower_features(). So, the NETDEV_FEAT_CHANGE notification logic of each lower interface work iteratively. But generated NETDEV_FEAT_CHANGE event is also sent to the upper interface too. upper interface(team0) generates the NETDEV_FEAT_CHANGE event for its own lower interfaces again. lower and upper interfaces receive this event and generate this event again and again. So, the stack overflow occurs. But it is not the infinite loop issue. Because the netdev_sync_lower_features() updates features before generating the NETDEV_FEAT_CHANGE event. Already synchronized lower interfaces skip notification logic. So, it is just the problem that iteration logic is changed to the recursive unexpectedly due to the notification mechanism. Reproducer: ip link add team0 type team ethtool -K team0 lro on for i in {1..200} do ip link add team$i master team0 type team ethtool -K team$i lro on done ethtool -K team0 lro off In order to fix it, the notifier_ctx member of bonding/team is introduced.
CVE-2023-54027 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: iio: core: Prevent invalid memory access when there is no parent Commit 813665564b3d ("iio: core: Convert to use firmware node handle instead of OF node") switched the kind of nodes to use for label retrieval in device registration. Probably an unwanted change in that commit was that if the device has no parent then NULL pointer is accessed. This is what happens in the stock IIO dummy driver when a new entry is created in configfs: # mkdir /sys/kernel/config/iio/devices/dummy/foo BUG: kernel NULL pointer dereference, address: ... ... Call Trace: __iio_device_register iio_dummy_probe Since there seems to be no reason to make a parent device of an IIO dummy device mandatory, let’s prevent the invalid memory access in __iio_device_register when the parent device is NULL. With this change, the IIO dummy driver works fine with configfs.
CVE-2025-68355 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix exclusive map memory leak When excl_prog_hash is 0 and excl_prog_hash_size is non-zero, the map also needs to be freed. Otherwise, the map memory will not be reclaimed, just like the memory leak problem reported by syzbot [1]. syzbot reported: BUG: memory leak backtrace (crc 7b9fb9b4): map_create+0x322/0x11e0 kernel/bpf/syscall.c:1512 __sys_bpf+0x3556/0x3610 kernel/bpf/syscall.c:6131
CVE-2023-54009 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: cadence: cdns_i2c_master_xfer(): Fix runtime PM leak on error path The cdns_i2c_master_xfer() function gets a runtime PM reference when the function is entered. This reference is released when the function is exited. There is currently one error path where the function exits directly, which leads to a leak of the runtime PM reference. Make sure that this error path also releases the runtime PM reference.
CVE-2023-54008 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: virtio_vdpa: build affinity masks conditionally We try to build affinity mask via create_affinity_masks() unconditionally which may lead several issues: - the affinity mask is not used for parent without affinity support (only VDUSE support the affinity now) - the logic of create_affinity_masks() might not work for devices other than block. For example it's not rare in the networking device where the number of queues could exceed the number of CPUs. Such case breaks the current affinity logic which is based on group_cpus_evenly() who assumes the number of CPUs are not less than the number of groups. This can trigger a warning[1]: if (ret >= 0) WARN_ON(nr_present + nr_others < numgrps); Fixing this by only build the affinity masks only when - Driver passes affinity descriptor, driver like virtio-blk can make sure to limit the number of queues when it exceeds the number of CPUs - Parent support affinity setting config ops This help to avoid the warning. More optimizations could be done on top. [1] [ 682.146655] WARNING: CPU: 6 PID: 1550 at lib/group_cpus.c:400 group_cpus_evenly+0x1aa/0x1c0 [ 682.146668] CPU: 6 PID: 1550 Comm: vdpa Not tainted 6.5.0-rc5jason+ #79 [ 682.146671] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [ 682.146673] RIP: 0010:group_cpus_evenly+0x1aa/0x1c0 [ 682.146676] Code: 4c 89 e0 5b 5d 41 5c 41 5d 41 5e c3 cc cc cc cc e8 1b c4 74 ff 48 89 ef e8 13 ac 98 ff 4c 89 e7 45 31 e4 e8 08 ac 98 ff eb c2 <0f> 0b eb b6 e8 fd 05 c3 00 45 31 e4 eb e5 cc cc cc cc cc cc cc cc [ 682.146679] RSP: 0018:ffffc9000215f498 EFLAGS: 00010293 [ 682.146682] RAX: 000000000001f1e0 RBX: 0000000000000041 RCX: 0000000000000000 [ 682.146684] RDX: ffff888109922058 RSI: 0000000000000041 RDI: 0000000000000030 [ 682.146686] RBP: ffff888109922058 R08: ffffc9000215f498 R09: ffffc9000215f4a0 [ 682.146687] R10: 00000000000198d0 R11: 0000000000000030 R12: ffff888107e02800 [ 682.146689] R13: 0000000000000030 R14: 0000000000000030 R15: 0000000000000041 [ 682.146692] FS: 00007fef52315740(0000) GS:ffff888237380000(0000) knlGS:0000000000000000 [ 682.146695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 682.146696] CR2: 00007fef52509000 CR3: 0000000110dbc004 CR4: 0000000000370ee0 [ 682.146698] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 682.146700] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 682.146701] Call Trace: [ 682.146703] <TASK> [ 682.146705] ? __warn+0x7b/0x130 [ 682.146709] ? group_cpus_evenly+0x1aa/0x1c0 [ 682.146712] ? report_bug+0x1c8/0x1e0 [ 682.146717] ? handle_bug+0x3c/0x70 [ 682.146721] ? exc_invalid_op+0x14/0x70 [ 682.146723] ? asm_exc_invalid_op+0x16/0x20 [ 682.146727] ? group_cpus_evenly+0x1aa/0x1c0 [ 682.146729] ? group_cpus_evenly+0x15c/0x1c0 [ 682.146731] create_affinity_masks+0xaf/0x1a0 [ 682.146735] virtio_vdpa_find_vqs+0x83/0x1d0 [ 682.146738] ? __pfx_default_calc_sets+0x10/0x10 [ 682.146742] virtnet_find_vqs+0x1f0/0x370 [ 682.146747] virtnet_probe+0x501/0xcd0 [ 682.146749] ? vp_modern_get_status+0x12/0x20 [ 682.146751] ? get_cap_addr.isra.0+0x10/0xc0 [ 682.146754] virtio_dev_probe+0x1af/0x260 [ 682.146759] really_probe+0x1a5/0x410
CVE-2023-54033 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps The LRU and LRU_PERCPU maps allocate a new element on update before locking the target hash table bucket. Right after that the maps try to lock the bucket. If this fails, then maps return -EBUSY to the caller without releasing the allocated element. This makes the element untracked: it doesn't belong to either of free lists, and it doesn't belong to the hash table, so can't be re-used; this eventually leads to the permanent -ENOMEM on LRU map updates, which is unexpected. Fix this by returning the element to the local free list if bucket locking fails.