| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: allow exp not to be removed in nf_ct_find_expectation
Currently nf_conntrack_in() calling nf_ct_find_expectation() will
remove the exp from the hash table. However, in some scenario, we
expect the exp not to be removed when the created ct will not be
confirmed, like in OVS and TC conntrack in the following patches.
This patch allows exp not to be removed by setting IPS_CONFIRMED
in the status of the tmpl. |
| A heap out-of-bounds write affecting Linux since v2.6.19-rc1 was discovered in net/netfilter/x_tables.c. This allows an attacker to gain privileges or cause a DoS (via heap memory corruption) through user name space |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix racy bitfield write in btrfs_clear_space_info_full()
From the memory-barriers.txt document regarding memory barrier ordering
guarantees:
(*) These guarantees do not apply to bitfields, because compilers often
generate code to modify these using non-atomic read-modify-write
sequences. Do not attempt to use bitfields to synchronize parallel
algorithms.
(*) Even in cases where bitfields are protected by locks, all fields
in a given bitfield must be protected by one lock. If two fields
in a given bitfield are protected by different locks, the compiler's
non-atomic read-modify-write sequences can cause an update to one
field to corrupt the value of an adjacent field.
btrfs_space_info has a bitfield sharing an underlying word consisting of
the fields full, chunk_alloc, and flush:
struct btrfs_space_info {
struct btrfs_fs_info * fs_info; /* 0 8 */
struct btrfs_space_info * parent; /* 8 8 */
...
int clamp; /* 172 4 */
unsigned int full:1; /* 176: 0 4 */
unsigned int chunk_alloc:1; /* 176: 1 4 */
unsigned int flush:1; /* 176: 2 4 */
...
Therefore, to be safe from parallel read-modify-writes losing a write to
one of the bitfield members protected by a lock, all writes to all the
bitfields must use the lock. They almost universally do, except for
btrfs_clear_space_info_full() which iterates over the space_infos and
writes out found->full = 0 without a lock.
Imagine that we have one thread completing a transaction in which we
finished deleting a block_group and are thus calling
btrfs_clear_space_info_full() while simultaneously the data reclaim
ticket infrastructure is running do_async_reclaim_data_space():
T1 T2
btrfs_commit_transaction
btrfs_clear_space_info_full
data_sinfo->full = 0
READ: full:0, chunk_alloc:0, flush:1
do_async_reclaim_data_space(data_sinfo)
spin_lock(&space_info->lock);
if(list_empty(tickets))
space_info->flush = 0;
READ: full: 0, chunk_alloc:0, flush:1
MOD/WRITE: full: 0, chunk_alloc:0, flush:0
spin_unlock(&space_info->lock);
return;
MOD/WRITE: full:0, chunk_alloc:0, flush:1
and now data_sinfo->flush is 1 but the reclaim worker has exited. This
breaks the invariant that flush is 0 iff there is no work queued or
running. Once this invariant is violated, future allocations that go
into __reserve_bytes() will add tickets to space_info->tickets but will
see space_info->flush is set to 1 and not queue the work. After this,
they will block forever on the resulting ticket, as it is now impossible
to kick the worker again.
I also confirmed by looking at the assembly of the affected kernel that
it is doing RMW operations. For example, to set the flush (3rd) bit to 0,
the assembly is:
andb $0xfb,0x60(%rbx)
and similarly for setting the full (1st) bit to 0:
andb $0xfe,-0x20(%rax)
So I think this is really a bug on practical systems. I have observed
a number of systems in this exact state, but am currently unable to
reproduce it.
Rather than leaving this footgun lying around for the future, take
advantage of the fact that there is room in the struct anyway, and that
it is already quite large and simply change the three bitfield members to
bools. This avoids writes to space_info->full having any effect on
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mips: bmips: BCM6358: disable RAC flush for TP1
RAC flush causes kernel panics on BCM6358 with EHCI/OHCI when booting from TP1:
[ 3.881739] usb 1-1: new high-speed USB device number 2 using ehci-platform
[ 3.895011] Reserved instruction in kernel code[#1]:
[ 3.900113] CPU: 0 PID: 1 Comm: init Not tainted 5.10.16 #0
[ 3.905829] $ 0 : 00000000 10008700 00000000 77d94060
[ 3.911238] $ 4 : 7fd1f088 00000000 81431cac 81431ca0
[ 3.916641] $ 8 : 00000000 ffffefff 8075cd34 00000000
[ 3.922043] $12 : 806f8d40 f3e812b7 00000000 000d9aaa
[ 3.927446] $16 : 7fd1f068 7fd1f080 7ff559b8 81428470
[ 3.932848] $20 : 00000000 00000000 55590000 77d70000
[ 3.938251] $24 : 00000018 00000010
[ 3.943655] $28 : 81430000 81431e60 81431f28 800157fc
[ 3.949058] Hi : 00000000
[ 3.952013] Lo : 00000000
[ 3.955019] epc : 80015808 setup_sigcontext+0x54/0x24c
[ 3.960464] ra : 800157fc setup_sigcontext+0x48/0x24c
[ 3.965913] Status: 10008703 KERNEL EXL IE
[ 3.970216] Cause : 00800028 (ExcCode 0a)
[ 3.974340] PrId : 0002a010 (Broadcom BMIPS4350)
[ 3.979170] Modules linked in: ohci_platform ohci_hcd fsl_mph_dr_of ehci_platform ehci_fsl ehci_hcd gpio_button_hotplug usbcore nls_base usb_common
[ 3.992907] Process init (pid: 1, threadinfo=(ptrval), task=(ptrval), tls=77e22ec8)
[ 4.000776] Stack : 81431ef4 7fd1f080 81431f28 81428470 7fd1f068 81431edc 7ff559b8 81428470
[ 4.009467] 81431f28 7fd1f080 55590000 77d70000 77d5498c 80015c70 806f0000 8063ae74
[ 4.018149] 08100002 81431f28 0000000a 08100002 81431f28 0000000a 77d6b418 00000003
[ 4.026831] ffffffff 80016414 80080734 81431ecc 81431ecc 00000001 00000000 04000000
[ 4.035512] 77d54874 00000000 00000000 00000000 00000000 00000012 00000002 00000000
[ 4.044196] ...
[ 4.046706] Call Trace:
[ 4.049238] [<80015808>] setup_sigcontext+0x54/0x24c
[ 4.054356] [<80015c70>] setup_frame+0xdc/0x124
[ 4.059015] [<80016414>] do_notify_resume+0x1dc/0x288
[ 4.064207] [<80011b50>] work_notifysig+0x10/0x18
[ 4.069036]
[ 4.070538] Code: 8fc300b4 00001025 26240008 <ac820000> ac830004 3c048063 0c0228aa 24846a00 26240010
[ 4.080686]
[ 4.082517] ---[ end trace 22a8edb41f5f983b ]---
[ 4.087374] Kernel panic - not syncing: Fatal exception
[ 4.092753] Rebooting in 1 seconds..
Because the bootloader (CFE) is not initializing the Read-ahead cache properly
on the second thread (TP1). Since the RAC was not initialized properly, we
should avoid flushing it at the risk of corrupting the instruction stream as
seen in the trace above. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix an issue found by KASAN
Write only correct size (32 instead of 64 bytes). |
| In the Linux kernel, the following vulnerability has been resolved:
ionic: remove WARN_ON to prevent panic_on_warn
Remove unnecessary early code development check and the WARN_ON
that it uses. The irq alloc and free paths have long been
cleaned up and this check shouldn't have stuck around so long. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-crypto: fix memory leak in virtio_crypto_alg_skcipher_close_session()
'vc_ctrl_req' is alloced in virtio_crypto_alg_skcipher_close_session(),
and should be freed in the invalid ctrl_status->status error handling
case. Otherwise there is a memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
net/ieee802154: don't warn zero-sized raw_sendmsg()
syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1],
for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting
__dev_queue_xmit() with skb->len == 0.
Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was
able to return 0, don't call __dev_queue_xmit() if packet length is 0.
----------
#include <sys/socket.h>
#include <netinet/in.h>
int main(int argc, char *argv[])
{
struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) };
struct iovec iov = { };
struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 };
sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0);
return 0;
}
----------
Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't
redirect packets with invalid pkt_len") should be reverted, for
skb->len == 0 was acceptable for at least PF_IEEE802154 socket. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: da7219: Fix an error handling path in da7219_register_dai_clks()
If clk_hw_register() fails, the corresponding clk should not be
unregistered.
To handle errors from loops, clean up partial iterations before doing the
goto. So add a clk_hw_unregister().
Then use a while (--i >= 0) loop in the unwind section. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa_sim: fix possible memory leak in vdpasim_net_init() and vdpasim_blk_init()
Inject fault while probing module, if device_register() fails in
vdpasim_net_init() or vdpasim_blk_init(), but the refcount of kobject is
not decreased to 0, the name allocated in dev_set_name() is leaked.
Fix this by calling put_device(), so that name can be freed in
callback function kobject_cleanup().
(vdpa_sim_net)
unreferenced object 0xffff88807eebc370 (size 16):
comm "modprobe", pid 3848, jiffies 4362982860 (age 18.153s)
hex dump (first 16 bytes):
76 64 70 61 73 69 6d 5f 6e 65 74 00 6b 6b 6b a5 vdpasim_net.kkk.
backtrace:
[<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150
[<ffffffff81731d53>] kstrdup+0x33/0x60
[<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110
[<ffffffff82d87aab>] dev_set_name+0xab/0xe0
[<ffffffff82d91a23>] device_add+0xe3/0x1a80
[<ffffffffa0270013>] 0xffffffffa0270013
[<ffffffff81001c27>] do_one_initcall+0x87/0x2e0
[<ffffffff813739cb>] do_init_module+0x1ab/0x640
[<ffffffff81379d20>] load_module+0x5d00/0x77f0
[<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0
[<ffffffff83c4d505>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
(vdpa_sim_blk)
unreferenced object 0xffff8881070c1250 (size 16):
comm "modprobe", pid 6844, jiffies 4364069319 (age 17.572s)
hex dump (first 16 bytes):
76 64 70 61 73 69 6d 5f 62 6c 6b 00 6b 6b 6b a5 vdpasim_blk.kkk.
backtrace:
[<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150
[<ffffffff81731d53>] kstrdup+0x33/0x60
[<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110
[<ffffffff82d87aab>] dev_set_name+0xab/0xe0
[<ffffffff82d91a23>] device_add+0xe3/0x1a80
[<ffffffffa0220013>] 0xffffffffa0220013
[<ffffffff81001c27>] do_one_initcall+0x87/0x2e0
[<ffffffff813739cb>] do_init_module+0x1ab/0x640
[<ffffffff81379d20>] load_module+0x5d00/0x77f0
[<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0
[<ffffffff83c4d505>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: smsm: Fix refcount leak bugs in qcom_smsm_probe()
There are two refcount leak bugs in qcom_smsm_probe():
(1) The 'local_node' is escaped out from for_each_child_of_node() as
the break of iteration, we should call of_node_put() for it in error
path or when it is not used anymore.
(2) The 'node' is escaped out from for_each_available_child_of_node()
as the 'goto', we should call of_node_put() for it in goto target. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: Fix use-after-free during usb config switch
In the process of switching USB config from rndis to other config,
if the hardware does not support the ->pullup callback, or the
hardware encounters a low probability fault, both of them may cause
the ->pullup callback to fail, which will then cause a system panic
(use after free).
The gadget drivers sometimes need to be unloaded regardless of the
hardware's behavior.
Analysis as follows:
=======================================================================
(1) write /config/usb_gadget/g1/UDC "none"
gether_disconnect+0x2c/0x1f8
rndis_disable+0x4c/0x74
composite_disconnect+0x74/0xb0
configfs_composite_disconnect+0x60/0x7c
usb_gadget_disconnect+0x70/0x124
usb_gadget_unregister_driver+0xc8/0x1d8
gadget_dev_desc_UDC_store+0xec/0x1e4
(2) rm /config/usb_gadget/g1/configs/b.1/f1
rndis_deregister+0x28/0x54
rndis_free+0x44/0x7c
usb_put_function+0x14/0x1c
config_usb_cfg_unlink+0xc4/0xe0
configfs_unlink+0x124/0x1c8
vfs_unlink+0x114/0x1dc
(3) rmdir /config/usb_gadget/g1/functions/rndis.gs4
panic+0x1fc/0x3d0
do_page_fault+0xa8/0x46c
do_mem_abort+0x3c/0xac
el1_sync_handler+0x40/0x78
0xffffff801138f880
rndis_close+0x28/0x34
eth_stop+0x74/0x110
dev_close_many+0x48/0x194
rollback_registered_many+0x118/0x814
unregister_netdev+0x20/0x30
gether_cleanup+0x1c/0x38
rndis_attr_release+0xc/0x14
kref_put+0x74/0xb8
configfs_rmdir+0x314/0x374
If gadget->ops->pullup() return an error, function rndis_close() will be
called, then it will causes a use-after-free problem.
======================================================================= |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix slab-out-of-bounds read in hdr_delete_de()
Here is a BUG report from syzbot:
BUG: KASAN: slab-out-of-bounds in hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
Read of size 16842960 at addr ffff888079cc0600 by task syz-executor934/3631
Call Trace:
memmove+0x25/0x60 mm/kasan/shadow.c:54
hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
indx_delete_entry+0x74f/0x3670 fs/ntfs3/index.c:2193
ni_remove_name+0x27a/0x980 fs/ntfs3/frecord.c:2910
ntfs_unlink_inode+0x3d4/0x720 fs/ntfs3/inode.c:1712
ntfs_rename+0x41a/0xcb0 fs/ntfs3/namei.c:276
Before using the meta-data in struct INDEX_HDR, we need to
check index header valid or not. Otherwise, the corruptedi
(or malicious) fs image can cause out-of-bounds access which
could make kernel panic. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix divide-by-zero in exfat_allocate_bitmap
The variable max_ra_count can be 0 in exfat_allocate_bitmap(),
which causes a divide-by-zero error in the subsequent modulo operation
(i % max_ra_count), leading to a system crash.
When max_ra_count is 0, it means that readahead is not used. This patch
load the bitmap without readahead. |
| In the Linux kernel, the following vulnerability has been resolved:
net: vxlan: prevent NULL deref in vxlan_xmit_one
Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in
vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the
following NULL dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:vxlan_xmit_one+0xbb3/0x1580
Call Trace:
vxlan_xmit+0x429/0x610
dev_hard_start_xmit+0x55/0xa0
__dev_queue_xmit+0x6d0/0x7f0
ip_finish_output2+0x24b/0x590
ip_output+0x63/0x110
Mentioned commits changed the code path in vxlan_xmit_one and as a side
effect the sock4/6 pointer validity checks in vxlan(6)_get_route were
lost. Fix this by adding back checks.
Since both commits being fixed were released in the same version (v6.7)
and are strongly related, bundle the fixes in a single commit. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix memory leak in __blkdev_issue_zero_pages
Move the fatal signal check before bio_alloc() to prevent a memory
leak when BLKDEV_ZERO_KILLABLE is set and a fatal signal is pending.
Previously, the bio was allocated before checking for a fatal signal.
If a signal was pending, the code would break out of the loop without
freeing or chaining the just-allocated bio, causing a memory leak.
This matches the pattern already used in __blkdev_issue_write_zeroes()
where the signal check precedes the allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Prevent recursive memory reclaim
Function new_inode() returns a new inode with inode->i_mapping->gfp_mask
set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so
allocations in that address space can recurse into filesystem memory
reclaim. We don't want that to happen because it can consume a
significant amount of stack memory.
Worse than that is that it can also deadlock: for example, in several
places, gfs2_unstuff_dinode() is called inside filesystem transactions.
This calls filemap_grab_folio(), which can allocate a new folio, which
can trigger memory reclaim. If memory reclaim recurses into the
filesystem and starts another transaction, a deadlock will ensue.
To fix these kinds of problems, prevent memory reclaim from recursing
into filesystem code by making sure that the gfp_mask of inode address
spaces doesn't include __GFP_FS.
The "meta" and resource group address spaces were already using GFP_NOFS
as their gfp_mask (which doesn't include __GFP_FS). The default value
of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To
avoid being overly limiting, use the default value and only knock off
the __GFP_FS flag. I'm not sure if this will actually make a
difference, but it also shouldn't hurt.
This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack
overflows from page cache allocation").
Fixes xfstest generic/273. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_vdpa: build affinity masks conditionally
We try to build affinity mask via create_affinity_masks()
unconditionally which may lead several issues:
- the affinity mask is not used for parent without affinity support
(only VDUSE support the affinity now)
- the logic of create_affinity_masks() might not work for devices
other than block. For example it's not rare in the networking device
where the number of queues could exceed the number of CPUs. Such
case breaks the current affinity logic which is based on
group_cpus_evenly() who assumes the number of CPUs are not less than
the number of groups. This can trigger a warning[1]:
if (ret >= 0)
WARN_ON(nr_present + nr_others < numgrps);
Fixing this by only build the affinity masks only when
- Driver passes affinity descriptor, driver like virtio-blk can make
sure to limit the number of queues when it exceeds the number of CPUs
- Parent support affinity setting config ops
This help to avoid the warning. More optimizations could be done on
top.
[1]
[ 682.146655] WARNING: CPU: 6 PID: 1550 at lib/group_cpus.c:400 group_cpus_evenly+0x1aa/0x1c0
[ 682.146668] CPU: 6 PID: 1550 Comm: vdpa Not tainted 6.5.0-rc5jason+ #79
[ 682.146671] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[ 682.146673] RIP: 0010:group_cpus_evenly+0x1aa/0x1c0
[ 682.146676] Code: 4c 89 e0 5b 5d 41 5c 41 5d 41 5e c3 cc cc cc cc e8 1b c4 74 ff 48 89 ef e8 13 ac 98 ff 4c 89 e7 45 31 e4 e8 08 ac 98 ff eb c2 <0f> 0b eb b6 e8 fd 05 c3 00 45 31 e4 eb e5 cc cc cc cc cc cc cc cc
[ 682.146679] RSP: 0018:ffffc9000215f498 EFLAGS: 00010293
[ 682.146682] RAX: 000000000001f1e0 RBX: 0000000000000041 RCX: 0000000000000000
[ 682.146684] RDX: ffff888109922058 RSI: 0000000000000041 RDI: 0000000000000030
[ 682.146686] RBP: ffff888109922058 R08: ffffc9000215f498 R09: ffffc9000215f4a0
[ 682.146687] R10: 00000000000198d0 R11: 0000000000000030 R12: ffff888107e02800
[ 682.146689] R13: 0000000000000030 R14: 0000000000000030 R15: 0000000000000041
[ 682.146692] FS: 00007fef52315740(0000) GS:ffff888237380000(0000) knlGS:0000000000000000
[ 682.146695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 682.146696] CR2: 00007fef52509000 CR3: 0000000110dbc004 CR4: 0000000000370ee0
[ 682.146698] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 682.146700] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 682.146701] Call Trace:
[ 682.146703] <TASK>
[ 682.146705] ? __warn+0x7b/0x130
[ 682.146709] ? group_cpus_evenly+0x1aa/0x1c0
[ 682.146712] ? report_bug+0x1c8/0x1e0
[ 682.146717] ? handle_bug+0x3c/0x70
[ 682.146721] ? exc_invalid_op+0x14/0x70
[ 682.146723] ? asm_exc_invalid_op+0x16/0x20
[ 682.146727] ? group_cpus_evenly+0x1aa/0x1c0
[ 682.146729] ? group_cpus_evenly+0x15c/0x1c0
[ 682.146731] create_affinity_masks+0xaf/0x1a0
[ 682.146735] virtio_vdpa_find_vqs+0x83/0x1d0
[ 682.146738] ? __pfx_default_calc_sets+0x10/0x10
[ 682.146742] virtnet_find_vqs+0x1f0/0x370
[ 682.146747] virtnet_probe+0x501/0xcd0
[ 682.146749] ? vp_modern_get_status+0x12/0x20
[ 682.146751] ? get_cap_addr.isra.0+0x10/0xc0
[ 682.146754] virtio_dev_probe+0x1af/0x260
[ 682.146759] really_probe+0x1a5/0x410 |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix wrong fallback logic for FDIR
When adding a FDIR filter, if ice_vc_fdir_set_irq_ctx returns failure,
the inserted fdir entry will not be removed and if ice_vc_fdir_write_fltr
returns failure, the fdir context info for irq handler will not be cleared
which may lead to inconsistent or memory leak issue. This patch refines
failure cases to resolve this issue. |