| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: return ERR_PTR instead of NULL when there is no link
hci_connect_sco currently returns NULL when there is no link (i.e. when
hci_conn_link() returns NULL).
sco_connect() expects an ERR_PTR in case of any error (see line 266 in
sco.c). Thus, hcon set as NULL passes through to sco_conn_add(), which
tries to get hcon->hdev, resulting in dereferencing a NULL pointer as
reported by syzkaller.
The same issue exists for iso_connect_cis() calling hci_connect_cis().
Thus, make hci_connect_sco() and hci_connect_cis() return ERR_PTR
instead of NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/net: don't overflow multishot recv
Don't allow overflowing multishot recv CQEs, it might get out of
hand, hurt performance, and in the worst case scenario OOM the task. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race when deleting quota root from the dirty cow roots list
When disabling quotas we are deleting the quota root from the list
fs_info->dirty_cowonly_roots without taking the lock that protects it,
which is struct btrfs_fs_info::trans_lock. This unsynchronized list
manipulation may cause chaos if there's another concurrent manipulation
of this list, such as when adding a root to it with
ctree.c:add_root_to_dirty_list().
This can result in all sorts of weird failures caused by a race, such as
the following crash:
[337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI
[337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.279928] Code: 85 38 06 00 (...)
[337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206
[337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000
[337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070
[337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b
[337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600
[337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48
[337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000
[337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0
[337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[337571.282874] Call Trace:
[337571.283101] <TASK>
[337571.283327] ? __die_body+0x1b/0x60
[337571.283570] ? die_addr+0x39/0x60
[337571.283796] ? exc_general_protection+0x22e/0x430
[337571.284022] ? asm_exc_general_protection+0x22/0x30
[337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs]
[337571.284803] ? _raw_spin_unlock+0x15/0x30
[337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs]
[337571.285305] reset_balance_state+0x152/0x1b0 [btrfs]
[337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs]
[337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410
[337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs]
[337571.286358] ? mod_objcg_state+0xd2/0x360
[337571.286577] ? refill_obj_stock+0xb0/0x160
[337571.286798] ? seq_release+0x25/0x30
[337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0
[337571.287235] ? percpu_counter_add_batch+0x2e/0xa0
[337571.287455] ? __x64_sys_ioctl+0x88/0xc0
[337571.287675] __x64_sys_ioctl+0x88/0xc0
[337571.287901] do_syscall_64+0x38/0x90
[337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[337571.288352] RIP: 0033:0x7f478aaffe9b
So fix this by locking struct btrfs_fs_info::trans_lock before deleting
the quota root from that list. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Make sure to zero vfio_iommu_type1_info before copying to user
Missed a zero initialization here. Most of the struct is filled with
a copy_from_user(), however minsz for that copy is smaller than the
actual struct by 8 bytes, thus we don't fill the padding. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix underflow in chain reference counter
Set element addition error path decrements reference counter on chains
twice: once on element release and again via nft_data_release().
Then, d6b478666ffa ("netfilter: nf_tables: fix underflow in object
reference counter") incorrectly fixed this by removing the stateful
object reference count decrement.
Restore the stateful object decrement as in b91d90368837 ("netfilter:
nf_tables: fix leaking object reference count") and let
nft_data_release() decrement the chain reference counter, so this is
done only once. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix wrong fallback logic for FDIR
When adding a FDIR filter, if ice_vc_fdir_set_irq_ctx returns failure,
the inserted fdir entry will not be removed and if ice_vc_fdir_write_fltr
returns failure, the fdir context info for irq handler will not be cleared
which may lead to inconsistent or memory leak issue. This patch refines
failure cases to resolve this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix the error "trying to register non-static key in rxe_cleanup_task"
In the function rxe_create_qp(), rxe_qp_from_init() is called to
initialize qp, internally things like rxe_init_task are not setup until
rxe_qp_init_req().
If an error occurred before this point then the unwind will call
rxe_cleanup() and eventually to rxe_qp_do_cleanup()/rxe_cleanup_task()
which will oops when trying to access the uninitialized spinlock.
If rxe_init_task is not executed, rxe_cleanup_task will not be called. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rsi: Do not configure WoWlan in shutdown hook if not enabled
In case WoWlan was never configured during the operation of the system,
the hw->wiphy->wowlan_config will be NULL. rsi_config_wowlan() checks
whether wowlan_config is non-NULL and if it is not, then WARNs about it.
The warning is valid, as during normal operation the rsi_config_wowlan()
should only ever be called with non-NULL wowlan_config. In shutdown this
rsi_config_wowlan() should only ever be called if WoWlan was configured
before by the user.
Add checks for non-NULL wowlan_config into the shutdown hook. While at it,
check whether the wiphy is also non-NULL before accessing wowlan_config .
Drop the single-use wowlan_config variable, just inline it into function
call. |
| In the Linux kernel, the following vulnerability has been resolved:
opp: Fix use-after-free in lazy_opp_tables after probe deferral
When dev_pm_opp_of_find_icc_paths() in _allocate_opp_table() returns
-EPROBE_DEFER, the opp_table is freed again, to wait until all the
interconnect paths are available.
However, if the OPP table is using required-opps then it may already
have been added to the global lazy_opp_tables list. The error path
does not remove the opp_table from the list again.
This can cause crashes later when the provider of the required-opps
is added, since we will iterate over OPP tables that have already been
freed. E.g.:
Unable to handle kernel NULL pointer dereference when read
CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.4.0-rc3
PC is at _of_add_opp_table_v2 (include/linux/of.h:949
drivers/opp/of.c:98 drivers/opp/of.c:344 drivers/opp/of.c:404
drivers/opp/of.c:1032) -> lazy_link_required_opp_table()
Fix this by calling _of_clear_opp_table() to remove the opp_table from
the list and clear other allocated resources. While at it, also add the
missing mutex_destroy() calls in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Destroy target device if coalesced MMIO unregistration fails
Destroy and free the target coalesced MMIO device if unregistering said
device fails. As clearly noted in the code, kvm_io_bus_unregister_dev()
does not destroy the target device.
BUG: memory leak
unreferenced object 0xffff888112a54880 (size 64):
comm "syz-executor.2", pid 5258, jiffies 4297861402 (age 14.129s)
hex dump (first 32 bytes):
38 c7 67 15 00 c9 ff ff 38 c7 67 15 00 c9 ff ff 8.g.....8.g.....
e0 c7 e1 83 ff ff ff ff 00 30 67 15 00 c9 ff ff .........0g.....
backtrace:
[<0000000006995a8a>] kmalloc include/linux/slab.h:556 [inline]
[<0000000006995a8a>] kzalloc include/linux/slab.h:690 [inline]
[<0000000006995a8a>] kvm_vm_ioctl_register_coalesced_mmio+0x8e/0x3d0 arch/x86/kvm/../../../virt/kvm/coalesced_mmio.c:150
[<00000000022550c2>] kvm_vm_ioctl+0x47d/0x1600 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3323
[<000000008a75102f>] vfs_ioctl fs/ioctl.c:46 [inline]
[<000000008a75102f>] file_ioctl fs/ioctl.c:509 [inline]
[<000000008a75102f>] do_vfs_ioctl+0xbab/0x1160 fs/ioctl.c:696
[<0000000080e3f669>] ksys_ioctl+0x76/0xa0 fs/ioctl.c:713
[<0000000059ef4888>] __do_sys_ioctl fs/ioctl.c:720 [inline]
[<0000000059ef4888>] __se_sys_ioctl fs/ioctl.c:718 [inline]
[<0000000059ef4888>] __x64_sys_ioctl+0x6f/0xb0 fs/ioctl.c:718
[<000000006444fa05>] do_syscall_64+0x9f/0x4e0 arch/x86/entry/common.c:290
[<000000009a4ed50b>] entry_SYSCALL_64_after_hwframe+0x49/0xbe
BUG: leak checking failed |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Devcom, fix error flow in mlx5_devcom_register_device
In case devcom allocation is failed, mlx5 is always freeing the priv.
However, this priv might have been allocated by a different thread,
and freeing it might lead to use-after-free bugs.
Fix it by freeing the priv only in case it was allocated by the
running thread. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/hdmi: Add missing check for alloc_ordered_workqueue
Add check for the return value of alloc_ordered_workqueue as it may return
NULL pointer and cause NULL pointer dereference in `hdmi_hdcp.c` and
`hdmi_hpd.c`.
Patchwork: https://patchwork.freedesktop.org/patch/517211/ |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: sf-pdma: pdma_desc memory leak fix
Commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread support for a
DMA channel") changed sf_pdma_prep_dma_memcpy() to unconditionally
allocate a new sf_pdma_desc each time it is called.
The driver previously recycled descs, by checking the in_use flag, only
allocating additional descs if the existing one was in use. This logic
was removed in commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread
support for a DMA channel"), but sf_pdma_free_desc() was not changed to
handle the new behaviour.
As a result, each time sf_pdma_prep_dma_memcpy() is called, the previous
descriptor is leaked, over time leading to memory starvation:
unreferenced object 0xffffffe008447300 (size 192):
comm "irq/39-mchp_dsc", pid 343, jiffies 4294906910 (age 981.200s)
hex dump (first 32 bytes):
00 00 00 ff 00 00 00 00 b8 c1 00 00 00 00 00 00 ................
00 00 70 08 10 00 00 00 00 00 00 c0 00 00 00 00 ..p.............
backtrace:
[<00000000064a04f4>] kmemleak_alloc+0x1e/0x28
[<00000000018927a7>] kmem_cache_alloc+0x11e/0x178
[<000000002aea8d16>] sf_pdma_prep_dma_memcpy+0x40/0x112
Add the missing kfree() to sf_pdma_free_desc(), and remove the redundant
in_use flag. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix memory leak when removing provided buffers
When removing provided buffers, io_buffer structs are not being disposed
of, leading to a memory leak. They can't be freed individually, because
they are allocated in page-sized groups. They need to be added to some
free list instead, such as io_buffers_cache. All callers already hold
the lock protecting it, apart from when destroying buffers, so had to
extend the lock there. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access
In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access
could occur during the memcpy() operation if the size of skb->cb is
larger than the size of struct j1939_sk_buff_cb. This is because the
memcpy() operation uses the size of skb->cb, leading to a read beyond
the struct j1939_sk_buff_cb.
Updated the memcpy() operation to use the size of struct
j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the
memcpy() operation only reads the memory within the bounds of struct
j1939_sk_buff_cb, preventing out-of-bounds memory access.
Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb
is greater than or equal to the size of struct j1939_sk_buff_cb. This
ensures that the skb->cb buffer is large enough to hold the
j1939_sk_buff_cb structure.
[mkl: rephrase commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential memory leaks at error path for UMP open
The allocation and initialization errors at alloc_midi_urbs() that is
called at MIDI 2.0 / UMP device are supposed to be handled at the
caller side by invoking free_midi_urbs(). However, free_midi_urbs()
loops only for ep->num_urbs entries, and since ep->num_entries wasn't
updated yet at the allocation / init error in alloc_midi_urbs(), this
entry won't be released.
The intention of free_midi_urbs() is to release the whole elements, so
change the loop size to NUM_URBS to scan over all elements for fixing
the missed releases.
Also, the call of free_midi_urbs() is missing at
snd_usb_midi_v2_open(). Although it'll be released later at
reopen/close or disconnection, it's better to release immediately at
the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: core: Prevent invalid memory access when there is no parent
Commit 813665564b3d ("iio: core: Convert to use firmware node handle
instead of OF node") switched the kind of nodes to use for label
retrieval in device registration. Probably an unwanted change in that
commit was that if the device has no parent then NULL pointer is
accessed. This is what happens in the stock IIO dummy driver when a
new entry is created in configfs:
# mkdir /sys/kernel/config/iio/devices/dummy/foo
BUG: kernel NULL pointer dereference, address: ...
...
Call Trace:
__iio_device_register
iio_dummy_probe
Since there seems to be no reason to make a parent device of an IIO
dummy device mandatory, let’s prevent the invalid memory access in
__iio_device_register when the parent device is NULL. With this
change, the IIO dummy driver works fine with configfs. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps
The LRU and LRU_PERCPU maps allocate a new element on update before locking the
target hash table bucket. Right after that the maps try to lock the bucket.
If this fails, then maps return -EBUSY to the caller without releasing the
allocated element. This makes the element untracked: it doesn't belong to
either of free lists, and it doesn't belong to the hash table, so can't be
re-used; this eventually leads to the permanent -ENOMEM on LRU map updates,
which is unexpected. Fix this by returning the element to the local free list
if bucket locking fails. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host
SDIO may need addtional 511 bytes to align bus operation. If the tailroom
of this skb is not big enough, we would access invalid memory region.
For low level operation, increase skb size to keep valid memory access in
SDIO host.
Error message:
[69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0
[69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451
[69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1
[69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300]
[69.951] Call Trace:
[69.951] <TASK>
[69.952] dump_stack_lvl+0x49/0x63
[69.952] print_report+0x171/0x4a8
[69.952] kasan_report+0xb4/0x130
[69.952] kasan_check_range+0x149/0x1e0
[69.952] memcpy+0x24/0x70
[69.952] sg_copy_buffer+0xe9/0x1a0
[69.952] sg_copy_to_buffer+0x12/0x20
[69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300]
[69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300]
[69.952] process_one_work+0x7ee/0x1320
[69.952] worker_thread+0x53c/0x1240
[69.952] kthread+0x2b8/0x370
[69.952] ret_from_fork+0x1f/0x30
[69.952] </TASK>
[69.952] Allocated by task 854:
[69.952] kasan_save_stack+0x26/0x50
[69.952] kasan_set_track+0x25/0x30
[69.952] kasan_save_alloc_info+0x1b/0x30
[69.952] __kasan_kmalloc+0x87/0xa0
[69.952] __kmalloc_node_track_caller+0x63/0x150
[69.952] kmalloc_reserve+0x31/0xd0
[69.952] __alloc_skb+0xfc/0x2b0
[69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76]
[69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76]
[69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76]
[69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib]
[69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib]
[69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common]
[69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s]
[69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common]
[69.953] process_one_work+0x7ee/0x1320
[69.953] worker_thread+0x53c/0x1240
[69.953] kthread+0x2b8/0x370
[69.953] ret_from_fork+0x1f/0x30
[69.953] The buggy address belongs to the object at ffff88811c9ce800
which belongs to the cache kmalloc-2k of size 2048
[69.953] The buggy address is located 0 bytes to the right of
2048-byte region [ffff88811c9ce800, ffff88811c9cf000)
[69.953] Memory state around the buggy address:
[69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ^
[69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
sched/psi: use kernfs polling functions for PSI trigger polling
Destroying psi trigger in cgroup_file_release causes UAF issues when
a cgroup is removed from under a polling process. This is happening
because cgroup removal causes a call to cgroup_file_release while the
actual file is still alive. Destroying the trigger at this point would
also destroy its waitqueue head and if there is still a polling process
on that file accessing the waitqueue, it will step on the freed pointer:
do_select
vfs_poll
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
wake_up_pollfree(&t->event_wait)
// vfs_poll is unblocked
synchronize_rcu
kfree(t)
poll_freewait -> UAF access to the trigger's waitqueue head
Patch [1] fixed this issue for epoll() case using wake_up_pollfree(),
however the same issue exists for synchronous poll() case.
The root cause of this issue is that the lifecycles of the psi trigger's
waitqueue and of the file associated with the trigger are different. Fix
this by using kernfs_generic_poll function when polling on cgroup-specific
psi triggers. It internally uses kernfs_open_node->poll waitqueue head
with its lifecycle tied to the file's lifecycle. This also renders the
fix in [1] obsolete, so revert it.
[1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()") |