| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
phy: hisilicon: Fix an out of bounds check in hisi_inno_phy_probe()
The size of array 'priv->ports[]' is INNO_PHY_PORT_NUM.
In the for loop, 'i' is used as the index for array 'priv->ports[]'
with a check (i > INNO_PHY_PORT_NUM) which indicates that
INNO_PHY_PORT_NUM is allowed value for 'i' in the same loop.
This > comparison needs to be changed to >=, otherwise it potentially leads
to an out of bounds write on the next iteration through the loop |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: jfs_dmap: Validate db_l2nbperpage while mounting
In jfs_dmap.c at line 381, BLKTODMAP is used to get a logical block
number inside dbFree(). db_l2nbperpage, which is the log2 number of
blocks per page, is passed as an argument to BLKTODMAP which uses it
for shifting.
Syzbot reported a shift out-of-bounds crash because db_l2nbperpage is
too big. This happens because the large value is set without any
validation in dbMount() at line 181.
Thus, make sure that db_l2nbperpage is correct while mounting.
Max number of blocks per page = Page size / Min block size
=> log2(Max num_block per page) = log2(Page size / Min block size)
= log2(Page size) - log2(Min block size)
=> Max db_l2nbperpage = L2PSIZE - L2MINBLOCKSIZE |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: slab-out-of-bounds read in brcmf_get_assoc_ies()
Fix a slab-out-of-bounds read that occurs in kmemdup() called from
brcmf_get_assoc_ies().
The bug could occur when assoc_info->req_len, data from a URB provided
by a USB device, is bigger than the size of buffer which is defined as
WL_EXTRA_BUF_MAX.
Add the size check for req_len/resp_len of assoc_info.
Found by a modified version of syzkaller.
[ 46.592467][ T7] ==================================================================
[ 46.594687][ T7] BUG: KASAN: slab-out-of-bounds in kmemdup+0x3e/0x50
[ 46.596572][ T7] Read of size 3014656 at addr ffff888019442000 by task kworker/0:1/7
[ 46.598575][ T7]
[ 46.599157][ T7] CPU: 0 PID: 7 Comm: kworker/0:1 Tainted: G O 5.14.0+ #145
[ 46.601333][ T7] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
[ 46.604360][ T7] Workqueue: events brcmf_fweh_event_worker
[ 46.605943][ T7] Call Trace:
[ 46.606584][ T7] dump_stack_lvl+0x8e/0xd1
[ 46.607446][ T7] print_address_description.constprop.0.cold+0x93/0x334
[ 46.608610][ T7] ? kmemdup+0x3e/0x50
[ 46.609341][ T7] kasan_report.cold+0x79/0xd5
[ 46.610151][ T7] ? kmemdup+0x3e/0x50
[ 46.610796][ T7] kasan_check_range+0x14e/0x1b0
[ 46.611691][ T7] memcpy+0x20/0x60
[ 46.612323][ T7] kmemdup+0x3e/0x50
[ 46.612987][ T7] brcmf_get_assoc_ies+0x967/0xf60
[ 46.613904][ T7] ? brcmf_notify_vif_event+0x3d0/0x3d0
[ 46.614831][ T7] ? lock_chain_count+0x20/0x20
[ 46.615683][ T7] ? mark_lock.part.0+0xfc/0x2770
[ 46.616552][ T7] ? lock_chain_count+0x20/0x20
[ 46.617409][ T7] ? mark_lock.part.0+0xfc/0x2770
[ 46.618244][ T7] ? lock_chain_count+0x20/0x20
[ 46.619024][ T7] brcmf_bss_connect_done.constprop.0+0x241/0x2e0
[ 46.620019][ T7] ? brcmf_parse_configure_security.isra.0+0x2a0/0x2a0
[ 46.620818][ T7] ? __lock_acquire+0x181f/0x5790
[ 46.621462][ T7] brcmf_notify_connect_status+0x448/0x1950
[ 46.622134][ T7] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 46.622736][ T7] ? brcmf_cfg80211_join_ibss+0x7b0/0x7b0
[ 46.623390][ T7] ? find_held_lock+0x2d/0x110
[ 46.623962][ T7] ? brcmf_fweh_event_worker+0x19f/0xc60
[ 46.624603][ T7] ? mark_held_locks+0x9f/0xe0
[ 46.625145][ T7] ? lockdep_hardirqs_on_prepare+0x3e0/0x3e0
[ 46.625871][ T7] ? brcmf_cfg80211_join_ibss+0x7b0/0x7b0
[ 46.626545][ T7] brcmf_fweh_call_event_handler.isra.0+0x90/0x100
[ 46.627338][ T7] brcmf_fweh_event_worker+0x557/0xc60
[ 46.627962][ T7] ? brcmf_fweh_call_event_handler.isra.0+0x100/0x100
[ 46.628736][ T7] ? rcu_read_lock_sched_held+0xa1/0xd0
[ 46.629396][ T7] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 46.629970][ T7] ? lockdep_hardirqs_on_prepare+0x273/0x3e0
[ 46.630649][ T7] process_one_work+0x92b/0x1460
[ 46.631205][ T7] ? pwq_dec_nr_in_flight+0x330/0x330
[ 46.631821][ T7] ? rwlock_bug.part.0+0x90/0x90
[ 46.632347][ T7] worker_thread+0x95/0xe00
[ 46.632832][ T7] ? __kthread_parkme+0x115/0x1e0
[ 46.633393][ T7] ? process_one_work+0x1460/0x1460
[ 46.633957][ T7] kthread+0x3a1/0x480
[ 46.634369][ T7] ? set_kthread_struct+0x120/0x120
[ 46.634933][ T7] ret_from_fork+0x1f/0x30
[ 46.635431][ T7]
[ 46.635687][ T7] Allocated by task 7:
[ 46.636151][ T7] kasan_save_stack+0x1b/0x40
[ 46.636628][ T7] __kasan_kmalloc+0x7c/0x90
[ 46.637108][ T7] kmem_cache_alloc_trace+0x19e/0x330
[ 46.637696][ T7] brcmf_cfg80211_attach+0x4a0/0x4040
[ 46.638275][ T7] brcmf_attach+0x389/0xd40
[ 46.638739][ T7] brcmf_usb_probe+0x12de/0x1690
[ 46.639279][ T7] usb_probe_interface+0x2aa/0x760
[ 46.639820][ T7] really_probe+0x205/0xb70
[ 46.640342][ T7] __driver_probe_device+0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix UBSAN shift-out-of-bounds warning
If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up
doing a shift operation where the number of bits shifted equals
number of bits in the operand. This behaviour is undefined.
Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the
count is >= number of bits in the operand.
Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472 |
| Substance3D - Designer versions 15.0.3 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| A buffer overflow vulnerability in the URL parser of the zhttpd web server in Zyxel VMG8825-T50K firmware versions prior to V5.50(ABOM.5)C0 could allow an unauthenticated attacker to cause denial-of-service (DoS) conditions and potentially execute arbitrary code by sending a specially crafted HTTP request. |
| Out-of-bounds Read vulnerability in Apache NimBLE HCI H4 driver. Specially crafted HCI event could lead to invalid memory read in H4 driver.
This issue affects Apache NimBLE: through 1.8.
This issue requires a broken or bogus Bluetooth controller and thus severity is considered low.
Users are recommended to upgrade to version 1.9, which fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport
[Why]
Potential out of bounds access in dml2_calculate_rq_and_dlg_params()
because the value of out_lowest_state_idx used as an index for FCLKChangeSupport
array can be greater than 1.
[How]
Currently dml2 core specifies identical values for all FCLKChangeSupport
elements. Always use index 0 in the condition to avoid out of bounds access. |
| Multiple out-of-bounds read vulnerabilities were identified in a system component responsible for handling certain data buffers. Due to insufficient validation of maximum buffer size values, the process may attempt to read beyond the intended memory region. Under specific conditions, this can result in a crash of the affected process and a potential denial-of-service of the compromised process. |
| Multiple out-of-bounds read vulnerabilities were identified in a system component responsible for handling certain data buffers. Due to insufficient validation of maximum buffer size values, the process may attempt to read beyond the intended memory region. Under specific conditions, this can result in a crash of the affected process and a potential denial-of-service of the compromised process. |
| Improper Validation of Array Index (CWE-129) exists in Metricbeat can allow an attacker to cause a Denial of Service through Input Data Manipulation (CAPEC-153) via specially crafted, malformed payloads sent to the Graphite server metricset or Zookeeper server metricset. Additionally, Improper Input Validation (CWE-20) exists in the Prometheus helper module that can allow an attacker to cause a Denial of Service through Input Data Manipulation (CAPEC-153) via specially crafted, malformed metric data. |
| A vulnerability classified as critical has been found in UTT 进取 750W up to 3.2.2-191225. This affects an unknown part of the file /goform/Fast_wireless_conf. The manipulation of the argument ssid leads to buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| libsmb2 6.2+ is vulnerable to Buffer Overflow. When processing SMB2 chained PDUs (NextCommand), libsmb2 repeatedly calls smb2_add_iovector() to append to a fixed-size iovec array without checking the upper bound of v->niov (SMB2_MAX_VECTORS=256). An attacker can craft responses with many chained PDUs to overflow v->niov and perform heap out-of-bounds writes, causing memory corruption, crashes, and potentially arbitrary code execution. The SMB2_OPLOCK_BREAK path bypasses message ID validation. |
| 51l3nc3, a member of the AXIS OS Bug Bounty Program, has found that the VAPIX API uploadoverlayimage.cgi did not have sufficient input validation to allow an attacker to upload files to block access to create image overlays in the web interface of the Axis device. |
| A buffer copy without checking size of input ('classic buffer overflow') vulnerability in Fortinet FortiExtender 7.6.0 through 7.6.1, FortiExtender 7.4.0 through 7.4.6, FortiExtender 7.2 all versions, FortiExtender 7.0 all versions may allow an authenticated user to execute arbitrary code or commands via crafted CLI commands. |
| An Heap-based Buffer Overflow vulnerability [CWE-122] in FortiOS version 7.6.2 and below, version 7.4.7 and below, version 7.2.10 and below, 7.0 all versions, 6.4 all versions; FortiPAM version 1.5.0, version 1.4.2 and below, 1.3 all versions, 1.2 all versions, 1.1 all versions, 1.0 all versions and FortiProxy version 7.6.2 and below, version 7.4.3 and below, 7.2 all versions, 7.0 all versions RDP bookmark connection may allow an authenticated user to execute unauthorized code via crafted requests. |
| A stack-based buffer overflow in Fortinet FortiOS version 7.4.0 through 7.4.1 and 7.2.0 through 7.2.7 and 7.0.0 through 7.0.12 and 6.4.6 through 6.4.15 and 6.2.9 through 6.2.16 and 6.0.13 through 6.0.18 allows attacker to execute unauthorized code or commands via specially crafted CLI commands. |
| A heap-based buffer overflow in Fortinet FortiSRA 1.5.0, 1.4.0 through 1.4.2, FortiPAM 1.5.0, 1.4.0 through 1.4.2, 1.3.0 through 1.3.1, 1.2.0, 1.1.0 through 1.1.2, 1.0.0 through 1.0.3, FortiProxy 7.6.0 through 7.6.1, 7.4.0 through 7.4.7, FortiOS 7.6.0 through 7.6.2, 7.4.0 through 7.4.6, 7.2.0 through 7.2.10, 7.0.2 through 7.0.16, FortiSwitchManager 7.2.1 through 7.2.5 allows attackers to escalate their privilege via specially crafted http requests. |
| A debug messages revealing unnecessary information vulnerability in Fortinet FortiExtender 7.6.0 through 7.6.1, FortiExtender 7.4.0 through 7.4.6, FortiExtender 7.2 all versions, FortiExtender 7.0 all versions may allow an authenticated user to obtain administrator credentials via debug log commands. |
| A Heap-based Buffer Overflow vulnerability [CWE-122] vulnerability in Fortinet FortiClientWindows 7.4.0 through 7.4.3, FortiClientWindows 7.2.0 through 7.2.8 may allow an authenticated local IPSec user to execute arbitrary code or commands via "fortips_74.sys". The attacker would need to bypass the Windows heap integrity protections |