| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: vxlan: prevent NULL deref in vxlan_xmit_one
Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in
vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the
following NULL dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:vxlan_xmit_one+0xbb3/0x1580
Call Trace:
vxlan_xmit+0x429/0x610
dev_hard_start_xmit+0x55/0xa0
__dev_queue_xmit+0x6d0/0x7f0
ip_finish_output2+0x24b/0x590
ip_output+0x63/0x110
Mentioned commits changed the code path in vxlan_xmit_one and as a side
effect the sock4/6 pointer validity checks in vxlan(6)_get_route were
lost. Fix this by adding back checks.
Since both commits being fixed were released in the same version (v6.7)
and are strongly related, bundle the fixes in a single commit. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Prevent recursive memory reclaim
Function new_inode() returns a new inode with inode->i_mapping->gfp_mask
set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so
allocations in that address space can recurse into filesystem memory
reclaim. We don't want that to happen because it can consume a
significant amount of stack memory.
Worse than that is that it can also deadlock: for example, in several
places, gfs2_unstuff_dinode() is called inside filesystem transactions.
This calls filemap_grab_folio(), which can allocate a new folio, which
can trigger memory reclaim. If memory reclaim recurses into the
filesystem and starts another transaction, a deadlock will ensue.
To fix these kinds of problems, prevent memory reclaim from recursing
into filesystem code by making sure that the gfp_mask of inode address
spaces doesn't include __GFP_FS.
The "meta" and resource group address spaces were already using GFP_NOFS
as their gfp_mask (which doesn't include __GFP_FS). The default value
of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To
avoid being overly limiting, use the default value and only knock off
the __GFP_FS flag. I'm not sure if this will actually make a
difference, but it also shouldn't hurt.
This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack
overflows from page cache allocation").
Fixes xfstest generic/273. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: of: fix double-free on unregistration
Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal
zone parameters structure"), thermal_zone_device_register() allocates
a copy of the tzp argument and frees it when unregistering, so
thermal_of_zone_register() now ends up leaking its original tzp and
double-freeing the tzp copy. Fix this by locating tzp on stack instead. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv4: fix one memleak in __inet_del_ifa()
I got the below warning when do fuzzing test:
unregister_netdevice: waiting for bond0 to become free. Usage count = 2
It can be repoduced via:
ip link add bond0 type bond
sysctl -w net.ipv4.conf.bond0.promote_secondaries=1
ip addr add 4.117.174.103/0 scope 0x40 dev bond0
ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0
ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0
ip addr del 4.117.174.103/0 scope 0x40 dev bond0
ip link delete bond0 type bond
In this reproduction test case, an incorrect 'last_prim' is found in
__inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40)
is lost. The memory of the secondary address is leaked and the reference of
in_device and net_device is leaked.
Fix this problem:
Look for 'last_prim' starting at location of the deleted IP and inserting
the promoted IP into the location of 'last_prim'. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add queue index attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa queue index attr to avoid
such bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: TC, Fix internal port memory leak
The flow rule can be splited, and the extra post_act rules are added
to post_act table. It's possible to trigger memleak when the rule
forwards packets from internal port and over tunnel, in the case that,
for example, CT 'new' state offload is allowed. As int_port object is
assigned to the flow attribute of post_act rule, and its refcnt is
incremented by mlx5e_tc_int_port_get(), but mlx5e_tc_int_port_put() is
not called, the refcnt is never decremented, then int_port is never
freed.
The kmemleak reports the following error:
unreferenced object 0xffff888128204b80 (size 64):
comm "handler20", pid 50121, jiffies 4296973009 (age 642.932s)
hex dump (first 32 bytes):
01 00 00 00 19 00 00 00 03 f0 00 00 04 00 00 00 ................
98 77 67 41 81 88 ff ff 98 77 67 41 81 88 ff ff .wgA.....wgA....
backtrace:
[<00000000e992680d>] kmalloc_trace+0x27/0x120
[<000000009e945a98>] mlx5e_tc_int_port_get+0x3f3/0xe20 [mlx5_core]
[<0000000035a537f0>] mlx5e_tc_add_fdb_flow+0x473/0xcf0 [mlx5_core]
[<0000000070c2cec6>] __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core]
[<000000005cc84048>] mlx5e_configure_flower+0xd40/0x4c40 [mlx5_core]
[<000000004f8a2031>] mlx5e_rep_indr_offload.isra.0+0x10e/0x1c0 [mlx5_core]
[<000000007df797dc>] mlx5e_rep_indr_setup_tc_cb+0x90/0x130 [mlx5_core]
[<0000000016c15cc3>] tc_setup_cb_add+0x1cf/0x410
[<00000000a63305b4>] fl_hw_replace_filter+0x38f/0x670 [cls_flower]
[<000000008bc9e77c>] fl_change+0x1fd5/0x4430 [cls_flower]
[<00000000e7f766e4>] tc_new_tfilter+0x867/0x2010
[<00000000e101c0ef>] rtnetlink_rcv_msg+0x6fc/0x9f0
[<00000000e1111d44>] netlink_rcv_skb+0x12c/0x360
[<0000000082dd6c8b>] netlink_unicast+0x438/0x710
[<00000000fc568f70>] netlink_sendmsg+0x794/0xc50
[<0000000016e92590>] sock_sendmsg+0xc5/0x190
So fix this by moving int_port cleanup code to the flow attribute
free helper, which is used by all the attribute free cases. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix refcount leak in exfat_find
Fix refcount leaks in `exfat_find` related to `exfat_get_dentry_set`.
Function `exfat_get_dentry_set` would increase the reference counter of
`es->bh` on success. Therefore, `exfat_put_dentry_set` must be called
after `exfat_get_dentry_set` to ensure refcount consistency. This patch
relocate two checks to avoid possible leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
ping: Fix potentail NULL deref for /proc/net/icmp.
After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid
of rwlock"), we use RCU for ping sockets, but we should use spinlock
for /proc/net/icmp to avoid a potential NULL deref mentioned in
the previous patch.
Let's go back to using spinlock there.
Note we can convert ping sockets to use hlist instead of hlist_nulls
because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps
The LRU and LRU_PERCPU maps allocate a new element on update before locking the
target hash table bucket. Right after that the maps try to lock the bucket.
If this fails, then maps return -EBUSY to the caller without releasing the
allocated element. This makes the element untracked: it doesn't belong to
either of free lists, and it doesn't belong to the hash table, so can't be
re-used; this eventually leads to the permanent -ENOMEM on LRU map updates,
which is unexpected. Fix this by returning the element to the local free list
if bucket locking fails. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix deadlock issue when externel_lb and reset are executed together
When externel_lb and reset are executed together, a deadlock may
occur:
[ 3147.217009] INFO: task kworker/u321:0:7 blocked for more than 120 seconds.
[ 3147.230483] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 3147.238999] task:kworker/u321:0 state:D stack: 0 pid: 7 ppid: 2 flags:0x00000008
[ 3147.248045] Workqueue: hclge hclge_service_task [hclge]
[ 3147.253957] Call trace:
[ 3147.257093] __switch_to+0x7c/0xbc
[ 3147.261183] __schedule+0x338/0x6f0
[ 3147.265357] schedule+0x50/0xe0
[ 3147.269185] schedule_preempt_disabled+0x18/0x24
[ 3147.274488] __mutex_lock.constprop.0+0x1d4/0x5dc
[ 3147.279880] __mutex_lock_slowpath+0x1c/0x30
[ 3147.284839] mutex_lock+0x50/0x60
[ 3147.288841] rtnl_lock+0x20/0x2c
[ 3147.292759] hclge_reset_prepare+0x68/0x90 [hclge]
[ 3147.298239] hclge_reset_subtask+0x88/0xe0 [hclge]
[ 3147.303718] hclge_reset_service_task+0x84/0x120 [hclge]
[ 3147.309718] hclge_service_task+0x2c/0x70 [hclge]
[ 3147.315109] process_one_work+0x1d0/0x490
[ 3147.319805] worker_thread+0x158/0x3d0
[ 3147.324240] kthread+0x108/0x13c
[ 3147.328154] ret_from_fork+0x10/0x18
In externel_lb process, the hns3 driver call napi_disable()
first, then the reset happen, then the restore process of the
externel_lb will fail, and will not call napi_enable(). When
doing externel_lb again, napi_disable() will be double call,
cause a deadlock of rtnl_lock().
This patch use the HNS3_NIC_STATE_DOWN state to protect the
calling of napi_disable() and napi_enable() in externel_lb
process, just as the usage in ndo_stop() and ndo_start(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Disallow unallocated resources to be returned
In the event that the topology requests resources that have not been
created by the system (because they are typically not represented in
dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC
blocks, until their allocation/assignment is being sanity-checked in
"drm/msm/dpu: Reject topologies for which no DSC blocks are available")
remain NULL but will still be returned out of
dpu_rm_get_assigned_resources, where the caller expects to get an array
containing num_blks valid pointers (but instead gets these NULLs).
To prevent this from happening, where null-pointer dereferences
typically result in a hard-to-debug platform lockup, num_blks shouldn't
increase past NULL blocks and will print an error and break instead.
After all, max_blks represents the static size of the maximum number of
blocks whereas the actual amount varies per platform.
^1: which can happen after a git rebase ended up moving additions to
_dpu_cfg to a different struct which has the same patch context.
Patchwork: https://patchwork.freedesktop.org/patch/517636/ |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data-race around unix_tot_inflight.
unix_tot_inflight is changed under spin_lock(unix_gc_lock), but
unix_release_sock() reads it locklessly.
Let's use READ_ONCE() for unix_tot_inflight.
Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix:
annote lockless accesses to unix_tot_inflight & gc_in_progress")
BUG: KCSAN: data-race in unix_inflight / unix_release_sock
write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1:
unix_inflight+0x130/0x180 net/unix/scm.c:64
unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123
unix_scm_to_skb net/unix/af_unix.c:1832 [inline]
unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg+0x148/0x160 net/socket.c:747
____sys_sendmsg+0x4e4/0x610 net/socket.c:2493
___sys_sendmsg+0xc6/0x140 net/socket.c:2547
__sys_sendmsg+0x94/0x140 net/socket.c:2576
__do_sys_sendmsg net/socket.c:2585 [inline]
__se_sys_sendmsg net/socket.c:2583 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2583
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0:
unix_release_sock+0x608/0x910 net/unix/af_unix.c:671
unix_release+0x59/0x80 net/unix/af_unix.c:1058
__sock_release+0x7d/0x170 net/socket.c:653
sock_close+0x19/0x30 net/socket.c:1385
__fput+0x179/0x5e0 fs/file_table.c:321
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x116/0x1a0 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204
__syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline]
syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297
do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x72/0xdc
value changed: 0x00000000 -> 0x00000001
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
configfs: fix possible memory leak in configfs_create_dir()
kmemleak reported memory leaks in configfs_create_dir():
unreferenced object 0xffff888009f6af00 (size 192):
comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s)
backtrace:
kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273)
new_fragment (./include/linux/slab.h:600 fs/configfs/dir.c:163)
configfs_register_subsystem (fs/configfs/dir.c:1857)
basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic
do_one_initcall (init/main.c:1296)
do_init_module (kernel/module/main.c:2455)
...
unreferenced object 0xffff888003ba7180 (size 96):
comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s)
backtrace:
kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273)
configfs_new_dirent (./include/linux/slab.h:723 fs/configfs/dir.c:194)
configfs_make_dirent (fs/configfs/dir.c:248)
configfs_create_dir (fs/configfs/dir.c:296)
configfs_attach_group.isra.28 (fs/configfs/dir.c:816 fs/configfs/dir.c:852)
configfs_register_subsystem (fs/configfs/dir.c:1881)
basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic
do_one_initcall (init/main.c:1296)
do_init_module (kernel/module/main.c:2455)
...
This is because the refcount is not correct in configfs_make_dirent().
For normal stage, the refcount is changing as:
configfs_register_subsystem()
configfs_create_dir()
configfs_make_dirent()
configfs_new_dirent() # set s_count = 1
dentry->d_fsdata = configfs_get(sd); # s_count = 2
...
configfs_unregister_subsystem()
configfs_remove_dir()
remove_dir()
configfs_remove_dirent() # s_count = 1
dput() ...
*dentry_unlink_inode()*
configfs_d_iput() # s_count = 0, release
However, if we failed in configfs_create():
configfs_register_subsystem()
configfs_create_dir()
configfs_make_dirent() # s_count = 2
...
configfs_create() # fail
->out_remove:
configfs_remove_dirent(dentry)
configfs_put(sd) # s_count = 1
return PTR_ERR(inode);
There is no inode in the error path, so the configfs_d_iput() is lost
and makes sd and fragment memory leaked.
To fix this, when we failed in configfs_create(), manually call
configfs_put(sd) to keep the refcount correct. |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: glink: Add check for kstrdup
Add check for the return value of kstrdup() and return the error
if it fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: Fix OOB Write in hfs_asc2mac
Syzbot reported a OOB Write bug:
loop0: detected capacity change from 0 to 64
==================================================================
BUG: KASAN: slab-out-of-bounds in hfs_asc2mac+0x467/0x9a0
fs/hfs/trans.c:133
Write of size 1 at addr ffff88801848314e by task syz-executor391/3632
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
print_address_description+0x74/0x340 mm/kasan/report.c:284
print_report+0x107/0x1f0 mm/kasan/report.c:395
kasan_report+0xcd/0x100 mm/kasan/report.c:495
hfs_asc2mac+0x467/0x9a0 fs/hfs/trans.c:133
hfs_cat_build_key+0x92/0x170 fs/hfs/catalog.c:28
hfs_lookup+0x1ab/0x2c0 fs/hfs/dir.c:31
lookup_open fs/namei.c:3391 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x10e6/0x2df0 fs/namei.c:3710
do_filp_open+0x264/0x4f0 fs/namei.c:3740
If in->len is much larger than HFS_NAMELEN(31) which is the maximum
length of an HFS filename, a OOB write could occur in hfs_asc2mac(). In
that case, when the dst reaches the boundary, the srclen is still
greater than 0, which causes a OOB write.
Fix this by adding a check on dstlen in while() before writing to dst
address. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: xgmiitorgmii: Fix refcount leak in xgmiitorgmii_probe
of_phy_find_device() return device node with refcount incremented.
Call put_device() to relese it when not needed anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: silence the warning when evicting inode with dioread_nolock
When evicting an inode with default dioread_nolock, it could be raced by
the unwritten extents converting kworker after writeback some new
allocated dirty blocks. It convert unwritten extents to written, the
extents could be merged to upper level and free extent blocks, so it
could mark the inode dirty again even this inode has been marked
I_FREEING. But the inode->i_io_list check and warning in
ext4_evict_inode() missing this corner case. Fortunately,
ext4_evict_inode() will wait all extents converting finished before this
check, so it will not lead to inode use-after-free problem, every thing
is OK besides this warning. The WARN_ON_ONCE was originally designed
for finding inode use-after-free issues in advance, but if we add
current dioread_nolock case in, it will become not quite useful, so fix
this warning by just remove this check.
======
WARNING: CPU: 7 PID: 1092 at fs/ext4/inode.c:227
ext4_evict_inode+0x875/0xc60
...
RIP: 0010:ext4_evict_inode+0x875/0xc60
...
Call Trace:
<TASK>
evict+0x11c/0x2b0
iput+0x236/0x3a0
do_unlinkat+0x1b4/0x490
__x64_sys_unlinkat+0x4c/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fa933c1115b
======
rm kworker
ext4_end_io_end()
vfs_unlink()
ext4_unlink()
ext4_convert_unwritten_io_end_vec()
ext4_convert_unwritten_extents()
ext4_map_blocks()
ext4_ext_map_blocks()
ext4_ext_try_to_merge_up()
__mark_inode_dirty()
check !I_FREEING
locked_inode_to_wb_and_lock_list()
iput()
iput_final()
evict()
ext4_evict_inode()
truncate_inode_pages_final() //wait release io_end
inode_io_list_move_locked()
ext4_release_io_end()
trigger WARN_ON_ONCE() |
| In the Linux kernel, the following vulnerability has been resolved:
media: camss: Clean up received buffers on failed start of streaming
It is required to return the received buffers, if streaming can not be
started. For instance media_pipeline_start() may fail with EPIPE, if
a link validation between entities is not passed, and in such a case
a user gets a kernel warning:
WARNING: CPU: 1 PID: 520 at drivers/media/common/videobuf2/videobuf2-core.c:1592 vb2_start_streaming+0xec/0x160
<snip>
Call trace:
vb2_start_streaming+0xec/0x160
vb2_core_streamon+0x9c/0x1a0
vb2_ioctl_streamon+0x68/0xbc
v4l_streamon+0x30/0x3c
__video_do_ioctl+0x184/0x3e0
video_usercopy+0x37c/0x7b0
video_ioctl2+0x24/0x40
v4l2_ioctl+0x4c/0x70
The fix is to correct the error path in video_start_streaming() of camss. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix memory leak in ocfs2_mount_volume()
There is a memory leak reported by kmemleak:
unreferenced object 0xffff88810cc65e60 (size 32):
comm "mount.ocfs2", pid 23753, jiffies 4302528942 (age 34735.105s)
hex dump (first 32 bytes):
10 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 ................
01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff8170f73d>] __kmalloc+0x4d/0x150
[<ffffffffa0ac3f51>] ocfs2_compute_replay_slots+0x121/0x330 [ocfs2]
[<ffffffffa0b65165>] ocfs2_check_volume+0x485/0x900 [ocfs2]
[<ffffffffa0b68129>] ocfs2_mount_volume.isra.0+0x1e9/0x650 [ocfs2]
[<ffffffffa0b7160b>] ocfs2_fill_super+0xe0b/0x1740 [ocfs2]
[<ffffffff818e1fe2>] mount_bdev+0x312/0x400
[<ffffffff819a086d>] legacy_get_tree+0xed/0x1d0
[<ffffffff818de82d>] vfs_get_tree+0x7d/0x230
[<ffffffff81957f92>] path_mount+0xd62/0x1760
[<ffffffff81958a5a>] do_mount+0xca/0xe0
[<ffffffff81958d3c>] __x64_sys_mount+0x12c/0x1a0
[<ffffffff82f26f15>] do_syscall_64+0x35/0x80
[<ffffffff8300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
This call stack is related to two problems. Firstly, the ocfs2 super uses
"replay_map" to trace online/offline slots, in order to recover offline
slots during recovery and mount. But when ocfs2_truncate_log_init()
returns an error in ocfs2_mount_volume(), the memory of "replay_map" will
not be freed in error handling path. Secondly, the memory of "replay_map"
will not be freed if d_make_root() returns an error in ocfs2_fill_super().
But the memory of "replay_map" will be freed normally when completing
recovery and mount in ocfs2_complete_mount_recovery().
Fix the first problem by adding error handling path to free "replay_map"
when ocfs2_truncate_log_init() fails. And fix the second problem by
calling ocfs2_free_replay_slots(osb) in the error handling path
"out_dismount". In addition, since ocfs2_free_replay_slots() is static,
it is necessary to remove its static attribute and declare it in header
file. |
| In the Linux kernel, the following vulnerability has been resolved:
md: avoid repeated calls to del_gendisk
There is a uaf problem which is found by case 23rdev-lifetime:
Oops: general protection fault, probably for non-canonical address 0xdead000000000122
RIP: 0010:bdi_unregister+0x4b/0x170
Call Trace:
<TASK>
__del_gendisk+0x356/0x3e0
mddev_unlock+0x351/0x360
rdev_attr_store+0x217/0x280
kernfs_fop_write_iter+0x14a/0x210
vfs_write+0x29e/0x550
ksys_write+0x74/0xf0
do_syscall_64+0xbb/0x380
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff5250a177e
The sequence is:
1. rdev remove path gets reconfig_mutex
2. rdev remove path release reconfig_mutex in mddev_unlock
3. md stop calls do_md_stop and sets MD_DELETED
4. rdev remove path calls del_gendisk because MD_DELETED is set
5. md stop path release reconfig_mutex and calls del_gendisk again
So there is a race condition we should resolve. This patch adds a
flag MD_DO_DELETE to avoid the race condition. |