Search Results (16777 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54006 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data-race around unix_tot_inflight. unix_tot_inflight is changed under spin_lock(unix_gc_lock), but unix_release_sock() reads it locklessly. Let's use READ_ONCE() for unix_tot_inflight. Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix: annote lockless accesses to unix_tot_inflight & gc_in_progress") BUG: KCSAN: data-race in unix_inflight / unix_release_sock write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1: unix_inflight+0x130/0x180 net/unix/scm.c:64 unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123 unix_scm_to_skb net/unix/af_unix.c:1832 [inline] unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0x148/0x160 net/socket.c:747 ____sys_sendmsg+0x4e4/0x610 net/socket.c:2493 ___sys_sendmsg+0xc6/0x140 net/socket.c:2547 __sys_sendmsg+0x94/0x140 net/socket.c:2576 __do_sys_sendmsg net/socket.c:2585 [inline] __se_sys_sendmsg net/socket.c:2583 [inline] __x64_sys_sendmsg+0x45/0x50 net/socket.c:2583 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0: unix_release_sock+0x608/0x910 net/unix/af_unix.c:671 unix_release+0x59/0x80 net/unix/af_unix.c:1058 __sock_release+0x7d/0x170 net/socket.c:653 sock_close+0x19/0x30 net/socket.c:1385 __fput+0x179/0x5e0 fs/file_table.c:321 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x116/0x1a0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297 do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc value changed: 0x00000000 -> 0x00000001 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
CVE-2023-54007 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vmci_host: fix a race condition in vmci_host_poll() causing GPF During fuzzing, a general protection fault is observed in vmci_host_poll(). general protection fault, probably for non-canonical address 0xdffffc0000000019: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000000c8-0x00000000000000cf] RIP: 0010:__lock_acquire+0xf3/0x5e00 kernel/locking/lockdep.c:4926 <- omitting registers -> Call Trace: <TASK> lock_acquire+0x1a4/0x4a0 kernel/locking/lockdep.c:5672 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xb3/0x100 kernel/locking/spinlock.c:162 add_wait_queue+0x3d/0x260 kernel/sched/wait.c:22 poll_wait include/linux/poll.h:49 [inline] vmci_host_poll+0xf8/0x2b0 drivers/misc/vmw_vmci/vmci_host.c:174 vfs_poll include/linux/poll.h:88 [inline] do_pollfd fs/select.c:873 [inline] do_poll fs/select.c:921 [inline] do_sys_poll+0xc7c/0x1aa0 fs/select.c:1015 __do_sys_ppoll fs/select.c:1121 [inline] __se_sys_ppoll+0x2cc/0x330 fs/select.c:1101 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4e/0xa0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Example thread interleaving that causes the general protection fault is as follows: CPU1 (vmci_host_poll) CPU2 (vmci_host_do_init_context) ----- ----- // Read uninitialized context context = vmci_host_dev->context; // Initialize context vmci_host_dev->context = vmci_ctx_create(); vmci_host_dev->ct_type = VMCIOBJ_CONTEXT; if (vmci_host_dev->ct_type == VMCIOBJ_CONTEXT) { // Dereferencing the wrong pointer poll_wait(..., &context->host_context); } In this scenario, vmci_host_poll() reads vmci_host_dev->context first, and then reads vmci_host_dev->ct_type to check that vmci_host_dev->context is initialized. However, since these two reads are not atomically executed, there is a chance of a race condition as described above. To fix this race condition, read vmci_host_dev->context after checking the value of vmci_host_dev->ct_type so that vmci_host_poll() always reads an initialized context.
CVE-2023-54009 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: cadence: cdns_i2c_master_xfer(): Fix runtime PM leak on error path The cdns_i2c_master_xfer() function gets a runtime PM reference when the function is entered. This reference is released when the function is exited. There is currently one error path where the function exits directly, which leads to a leak of the runtime PM reference. Make sure that this error path also releases the runtime PM reference.
CVE-2023-54012 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: fix stack overflow when LRO is disabled for virtual interfaces When the virtual interface's feature is updated, it synchronizes the updated feature for its own lower interface. This propagation logic should be worked as the iteration, not recursively. But it works recursively due to the netdev notification unexpectedly. This problem occurs when it disables LRO only for the team and bonding interface type. team0 | +------+------+-----+-----+ | | | | | team1 team2 team3 ... team200 If team0's LRO feature is updated, it generates the NETDEV_FEAT_CHANGE event to its own lower interfaces(team1 ~ team200). It is worked by netdev_sync_lower_features(). So, the NETDEV_FEAT_CHANGE notification logic of each lower interface work iteratively. But generated NETDEV_FEAT_CHANGE event is also sent to the upper interface too. upper interface(team0) generates the NETDEV_FEAT_CHANGE event for its own lower interfaces again. lower and upper interfaces receive this event and generate this event again and again. So, the stack overflow occurs. But it is not the infinite loop issue. Because the netdev_sync_lower_features() updates features before generating the NETDEV_FEAT_CHANGE event. Already synchronized lower interfaces skip notification logic. So, it is just the problem that iteration logic is changed to the recursive unexpectedly due to the notification mechanism. Reproducer: ip link add team0 type team ethtool -K team0 lro on for i in {1..200} do ip link add team$i master team0 type team ethtool -K team$i lro on done ethtool -K team0 lro off In order to fix it, the notifier_ctx member of bonding/team is introduced.
CVE-2023-54019 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/psi: use kernfs polling functions for PSI trigger polling Destroying psi trigger in cgroup_file_release causes UAF issues when a cgroup is removed from under a polling process. This is happening because cgroup removal causes a call to cgroup_file_release while the actual file is still alive. Destroying the trigger at this point would also destroy its waitqueue head and if there is still a polling process on that file accessing the waitqueue, it will step on the freed pointer: do_select vfs_poll do_rmdir cgroup_rmdir kernfs_drain_open_files cgroup_file_release cgroup_pressure_release psi_trigger_destroy wake_up_pollfree(&t->event_wait) // vfs_poll is unblocked synchronize_rcu kfree(t) poll_freewait -> UAF access to the trigger's waitqueue head Patch [1] fixed this issue for epoll() case using wake_up_pollfree(), however the same issue exists for synchronous poll() case. The root cause of this issue is that the lifecycles of the psi trigger's waitqueue and of the file associated with the trigger are different. Fix this by using kernfs_generic_poll function when polling on cgroup-specific psi triggers. It internally uses kernfs_open_node->poll waitqueue head with its lifecycle tied to the file's lifecycle. This also renders the fix in [1] obsolete, so revert it. [1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()")
CVE-2023-54022 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix potential memory leaks at error path for UMP open The allocation and initialization errors at alloc_midi_urbs() that is called at MIDI 2.0 / UMP device are supposed to be handled at the caller side by invoking free_midi_urbs(). However, free_midi_urbs() loops only for ep->num_urbs entries, and since ep->num_entries wasn't updated yet at the allocation / init error in alloc_midi_urbs(), this entry won't be released. The intention of free_midi_urbs() is to release the whole elements, so change the loop size to NUM_URBS to scan over all elements for fixing the missed releases. Also, the call of free_midi_urbs() is missing at snd_usb_midi_v2_open(). Although it'll be released later at reopen/close or disconnection, it's better to release immediately at the error path.
CVE-2023-54027 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: iio: core: Prevent invalid memory access when there is no parent Commit 813665564b3d ("iio: core: Convert to use firmware node handle instead of OF node") switched the kind of nodes to use for label retrieval in device registration. Probably an unwanted change in that commit was that if the device has no parent then NULL pointer is accessed. This is what happens in the stock IIO dummy driver when a new entry is created in configfs: # mkdir /sys/kernel/config/iio/devices/dummy/foo BUG: kernel NULL pointer dereference, address: ... ... Call Trace: __iio_device_register iio_dummy_probe Since there seems to be no reason to make a parent device of an IIO dummy device mandatory, let’s prevent the invalid memory access in __iio_device_register when the parent device is NULL. With this change, the IIO dummy driver works fine with configfs.
CVE-2023-54033 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps The LRU and LRU_PERCPU maps allocate a new element on update before locking the target hash table bucket. Right after that the maps try to lock the bucket. If this fails, then maps return -EBUSY to the caller without releasing the allocated element. This makes the element untracked: it doesn't belong to either of free lists, and it doesn't belong to the hash table, so can't be re-used; this eventually leads to the permanent -ENOMEM on LRU map updates, which is unexpected. Fix this by returning the element to the local free list if bucket locking fails.
CVE-2023-54036 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl8xxxu: Fix memory leaks with RTL8723BU, RTL8192EU The wifi + bluetooth combo chip RTL8723BU can leak memory (especially?) when it's connected to a bluetooth audio device. The busy bluetooth traffic generates lots of C2H (card to host) messages, which are not freed correctly. To fix this, move the dev_kfree_skb() call in rtl8xxxu_c2hcmd_callback() inside the loop where skb_dequeue() is called. The RTL8192EU leaks memory because the C2H messages are added to the queue and left there forever. (This was fine in the past because it probably wasn't sending any C2H messages until commit e542e66b7c2e ("wifi: rtl8xxxu: gen2: Turn on the rate control"). Since that commit it sends a C2H message when the TX rate changes.) To fix this, delete the check for rf_paths > 1 and the goto. Let the function process the C2H messages from RTL8192EU like the ones from the other chips. Theoretically the RTL8188FU could also leak like RTL8723BU, but it most likely doesn't send C2H messages frequently enough. This change was tested with RTL8723BU by Erhard F. I tested it with RTL8188FU and RTL8192EU.
CVE-2023-54039 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access could occur during the memcpy() operation if the size of skb->cb is larger than the size of struct j1939_sk_buff_cb. This is because the memcpy() operation uses the size of skb->cb, leading to a read beyond the struct j1939_sk_buff_cb. Updated the memcpy() operation to use the size of struct j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the memcpy() operation only reads the memory within the bounds of struct j1939_sk_buff_cb, preventing out-of-bounds memory access. Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb is greater than or equal to the size of struct j1939_sk_buff_cb. This ensures that the skb->cb buffer is large enough to hold the j1939_sk_buff_cb structure. [mkl: rephrase commit message]
CVE-2025-68353 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: vxlan: prevent NULL deref in vxlan_xmit_one Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the following NULL dereference: BUG: kernel NULL pointer dereference, address: 0000000000000010 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:vxlan_xmit_one+0xbb3/0x1580 Call Trace: vxlan_xmit+0x429/0x610 dev_hard_start_xmit+0x55/0xa0 __dev_queue_xmit+0x6d0/0x7f0 ip_finish_output2+0x24b/0x590 ip_output+0x63/0x110 Mentioned commits changed the code path in vxlan_xmit_one and as a side effect the sock4/6 pointer validity checks in vxlan(6)_get_route were lost. Fix this by adding back checks. Since both commits being fixed were released in the same version (v6.7) and are strongly related, bundle the fixes in a single commit.
CVE-2025-68356 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Prevent recursive memory reclaim Function new_inode() returns a new inode with inode->i_mapping->gfp_mask set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so allocations in that address space can recurse into filesystem memory reclaim. We don't want that to happen because it can consume a significant amount of stack memory. Worse than that is that it can also deadlock: for example, in several places, gfs2_unstuff_dinode() is called inside filesystem transactions. This calls filemap_grab_folio(), which can allocate a new folio, which can trigger memory reclaim. If memory reclaim recurses into the filesystem and starts another transaction, a deadlock will ensue. To fix these kinds of problems, prevent memory reclaim from recursing into filesystem code by making sure that the gfp_mask of inode address spaces doesn't include __GFP_FS. The "meta" and resource group address spaces were already using GFP_NOFS as their gfp_mask (which doesn't include __GFP_FS). The default value of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To avoid being overly limiting, use the default value and only knock off the __GFP_FS flag. I'm not sure if this will actually make a difference, but it also shouldn't hurt. This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack overflows from page cache allocation"). Fixes xfstest generic/273.
CVE-2025-68734 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: isdn: mISDN: hfcsusb: fix memory leak in hfcsusb_probe() In hfcsusb_probe(), the memory allocated for ctrl_urb gets leaked when setup_instance() fails with an error code. Fix that by freeing the urb before freeing the hw structure. Also change the error paths to use the goto ladder style. Compile tested only. Issue found using a prototype static analysis tool.
CVE-2025-68731 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: accel/amdxdna: Fix an integer overflow in aie2_query_ctx_status_array() The unpublished smatch static checker reported a warning. drivers/accel/amdxdna/aie2_pci.c:904 aie2_query_ctx_status_array() warn: potential user controlled sizeof overflow 'args->num_element * args->element_size' '1-u32max(user) * 1-u32max(user)' Even this will not cause a real issue, it is better to put a reasonable limitation for element_size and num_element. Add condition to make sure the input element_size <= 4K and num_element <= 1K.
CVE-2025-68729 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Fix MSDU buffer types handling in RX error path Currently, packets received on the REO exception ring from unassociated peers are of MSDU buffer type, while the driver expects link descriptor type packets. These packets are not parsed further due to a return check on packet type in ath12k_hal_desc_reo_parse_err(), but the associated skb is not freed. This may lead to kernel crashes and buffer leaks. Hence to fix, update the RX error handler to explicitly drop MSDU buffer type packets received on the REO exception ring. This prevents further processing of invalid packets and ensures stability in the RX error handling path. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1
CVE-2025-68726 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: aead - Fix reqsize handling Commit afddce13ce81d ("crypto: api - Add reqsize to crypto_alg") introduced cra_reqsize field in crypto_alg struct to replace type specific reqsize fields. It looks like this was introduced specifically for ahash and acomp from the commit description as subsequent commits add necessary changes in these alg frameworks. However, this is being recommended for use in all crypto algs instead of setting reqsize using crypto_*_set_reqsize(). Using cra_reqsize in aead algorithms, hence, causes memory corruptions and crashes as the underlying functions in the algorithm framework have not been updated to set the reqsize properly from cra_reqsize. [1] Add proper set_reqsize calls in the aead init function to properly initialize reqsize for these algorithms in the framework. [1]: https://gist.github.com/Pratham-T/24247446f1faf4b7843e4014d5089f6b
CVE-2022-50780 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix UAF issue in nfqnl_nf_hook_drop() when ops_init() failed When the ops_init() interface is invoked to initialize the net, but ops->init() fails, data is released. However, the ptr pointer in net->gen is invalid. In this case, when nfqnl_nf_hook_drop() is invoked to release the net, invalid address access occurs. The process is as follows: setup_net() ops_init() data = kzalloc(...) ---> alloc "data" net_assign_generic() ---> assign "date" to ptr in net->gen ... ops->init() ---> failed ... kfree(data); ---> ptr in net->gen is invalid ... ops_exit_list() ... nfqnl_nf_hook_drop() *q = nfnl_queue_pernet(net) ---> q is invalid The following is the Call Trace information: BUG: KASAN: use-after-free in nfqnl_nf_hook_drop+0x264/0x280 Read of size 8 at addr ffff88810396b240 by task ip/15855 Call Trace: <TASK> dump_stack_lvl+0x8e/0xd1 print_report+0x155/0x454 kasan_report+0xba/0x1f0 nfqnl_nf_hook_drop+0x264/0x280 nf_queue_nf_hook_drop+0x8b/0x1b0 __nf_unregister_net_hook+0x1ae/0x5a0 nf_unregister_net_hooks+0xde/0x130 ops_exit_list+0xb0/0x170 setup_net+0x7ac/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> Allocated by task 15855: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0xa1/0xb0 __kmalloc+0x49/0xb0 ops_init+0xe7/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 15855: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x155/0x1b0 slab_free_freelist_hook+0x11b/0x220 __kmem_cache_free+0xa4/0x360 ops_init+0xb9/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2023-54111 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: pinctrl: rockchip: Fix refcount leak in rockchip_pinctrl_parse_groups of_find_node_by_phandle() returns a node pointer with refcount incremented, We should use of_node_put() on it when not needed anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2023-54043 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd: Do not add the same hwpt to the ioas->hwpt_list twice The hwpt is added to the hwpt_list only during its creation, it is never added again. This hunk is some missed leftover from rework. Adding it twice will corrupt the linked list in some cases. It effects HWPT specific attachment, which is something the test suite cannot cover until we can create a legitimate struct device with a non-system iommu "driver" (ie we need the bus removed from the iommu code)
CVE-2023-54056 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kheaders: Use array declaration instead of char Under CONFIG_FORTIFY_SOURCE, memcpy() will check the size of destination and source buffers. Defining kernel_headers_data as "char" would trip this check. Since these addresses are treated as byte arrays, define them as arrays (as done everywhere else). This was seen with: $ cat /sys/kernel/kheaders.tar.xz >> /dev/null detected buffer overflow in memcpy kernel BUG at lib/string_helpers.c:1027! ... RIP: 0010:fortify_panic+0xf/0x20 [...] Call Trace: <TASK> ikheaders_read+0x45/0x50 [kheaders] kernfs_fop_read_iter+0x1a4/0x2f0 ...