| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa_sim: fix possible memory leak in vdpasim_net_init() and vdpasim_blk_init()
Inject fault while probing module, if device_register() fails in
vdpasim_net_init() or vdpasim_blk_init(), but the refcount of kobject is
not decreased to 0, the name allocated in dev_set_name() is leaked.
Fix this by calling put_device(), so that name can be freed in
callback function kobject_cleanup().
(vdpa_sim_net)
unreferenced object 0xffff88807eebc370 (size 16):
comm "modprobe", pid 3848, jiffies 4362982860 (age 18.153s)
hex dump (first 16 bytes):
76 64 70 61 73 69 6d 5f 6e 65 74 00 6b 6b 6b a5 vdpasim_net.kkk.
backtrace:
[<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150
[<ffffffff81731d53>] kstrdup+0x33/0x60
[<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110
[<ffffffff82d87aab>] dev_set_name+0xab/0xe0
[<ffffffff82d91a23>] device_add+0xe3/0x1a80
[<ffffffffa0270013>] 0xffffffffa0270013
[<ffffffff81001c27>] do_one_initcall+0x87/0x2e0
[<ffffffff813739cb>] do_init_module+0x1ab/0x640
[<ffffffff81379d20>] load_module+0x5d00/0x77f0
[<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0
[<ffffffff83c4d505>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
(vdpa_sim_blk)
unreferenced object 0xffff8881070c1250 (size 16):
comm "modprobe", pid 6844, jiffies 4364069319 (age 17.572s)
hex dump (first 16 bytes):
76 64 70 61 73 69 6d 5f 62 6c 6b 00 6b 6b 6b a5 vdpasim_blk.kkk.
backtrace:
[<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150
[<ffffffff81731d53>] kstrdup+0x33/0x60
[<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110
[<ffffffff82d87aab>] dev_set_name+0xab/0xe0
[<ffffffff82d91a23>] device_add+0xe3/0x1a80
[<ffffffffa0220013>] 0xffffffffa0220013
[<ffffffff81001c27>] do_one_initcall+0x87/0x2e0
[<ffffffff813739cb>] do_init_module+0x1ab/0x640
[<ffffffff81379d20>] load_module+0x5d00/0x77f0
[<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0
[<ffffffff83c4d505>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
net/ieee802154: don't warn zero-sized raw_sendmsg()
syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1],
for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting
__dev_queue_xmit() with skb->len == 0.
Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was
able to return 0, don't call __dev_queue_xmit() if packet length is 0.
----------
#include <sys/socket.h>
#include <netinet/in.h>
int main(int argc, char *argv[])
{
struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) };
struct iovec iov = { };
struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 };
sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0);
return 0;
}
----------
Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't
redirect packets with invalid pkt_len") should be reverted, for
skb->len == 0 was acceptable for at least PF_IEEE802154 socket. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: da7219: Fix an error handling path in da7219_register_dai_clks()
If clk_hw_register() fails, the corresponding clk should not be
unregistered.
To handle errors from loops, clean up partial iterations before doing the
goto. So add a clk_hw_unregister().
Then use a while (--i >= 0) loop in the unwind section. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_vdpa: build affinity masks conditionally
We try to build affinity mask via create_affinity_masks()
unconditionally which may lead several issues:
- the affinity mask is not used for parent without affinity support
(only VDUSE support the affinity now)
- the logic of create_affinity_masks() might not work for devices
other than block. For example it's not rare in the networking device
where the number of queues could exceed the number of CPUs. Such
case breaks the current affinity logic which is based on
group_cpus_evenly() who assumes the number of CPUs are not less than
the number of groups. This can trigger a warning[1]:
if (ret >= 0)
WARN_ON(nr_present + nr_others < numgrps);
Fixing this by only build the affinity masks only when
- Driver passes affinity descriptor, driver like virtio-blk can make
sure to limit the number of queues when it exceeds the number of CPUs
- Parent support affinity setting config ops
This help to avoid the warning. More optimizations could be done on
top.
[1]
[ 682.146655] WARNING: CPU: 6 PID: 1550 at lib/group_cpus.c:400 group_cpus_evenly+0x1aa/0x1c0
[ 682.146668] CPU: 6 PID: 1550 Comm: vdpa Not tainted 6.5.0-rc5jason+ #79
[ 682.146671] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[ 682.146673] RIP: 0010:group_cpus_evenly+0x1aa/0x1c0
[ 682.146676] Code: 4c 89 e0 5b 5d 41 5c 41 5d 41 5e c3 cc cc cc cc e8 1b c4 74 ff 48 89 ef e8 13 ac 98 ff 4c 89 e7 45 31 e4 e8 08 ac 98 ff eb c2 <0f> 0b eb b6 e8 fd 05 c3 00 45 31 e4 eb e5 cc cc cc cc cc cc cc cc
[ 682.146679] RSP: 0018:ffffc9000215f498 EFLAGS: 00010293
[ 682.146682] RAX: 000000000001f1e0 RBX: 0000000000000041 RCX: 0000000000000000
[ 682.146684] RDX: ffff888109922058 RSI: 0000000000000041 RDI: 0000000000000030
[ 682.146686] RBP: ffff888109922058 R08: ffffc9000215f498 R09: ffffc9000215f4a0
[ 682.146687] R10: 00000000000198d0 R11: 0000000000000030 R12: ffff888107e02800
[ 682.146689] R13: 0000000000000030 R14: 0000000000000030 R15: 0000000000000041
[ 682.146692] FS: 00007fef52315740(0000) GS:ffff888237380000(0000) knlGS:0000000000000000
[ 682.146695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 682.146696] CR2: 00007fef52509000 CR3: 0000000110dbc004 CR4: 0000000000370ee0
[ 682.146698] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 682.146700] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 682.146701] Call Trace:
[ 682.146703] <TASK>
[ 682.146705] ? __warn+0x7b/0x130
[ 682.146709] ? group_cpus_evenly+0x1aa/0x1c0
[ 682.146712] ? report_bug+0x1c8/0x1e0
[ 682.146717] ? handle_bug+0x3c/0x70
[ 682.146721] ? exc_invalid_op+0x14/0x70
[ 682.146723] ? asm_exc_invalid_op+0x16/0x20
[ 682.146727] ? group_cpus_evenly+0x1aa/0x1c0
[ 682.146729] ? group_cpus_evenly+0x15c/0x1c0
[ 682.146731] create_affinity_masks+0xaf/0x1a0
[ 682.146735] virtio_vdpa_find_vqs+0x83/0x1d0
[ 682.146738] ? __pfx_default_calc_sets+0x10/0x10
[ 682.146742] virtnet_find_vqs+0x1f0/0x370
[ 682.146747] virtnet_probe+0x501/0xcd0
[ 682.146749] ? vp_modern_get_status+0x12/0x20
[ 682.146751] ? get_cap_addr.isra.0+0x10/0xc0
[ 682.146754] virtio_dev_probe+0x1af/0x260
[ 682.146759] really_probe+0x1a5/0x410 |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: cadence: cdns_i2c_master_xfer(): Fix runtime PM leak on error path
The cdns_i2c_master_xfer() function gets a runtime PM reference when the
function is entered. This reference is released when the function is
exited. There is currently one error path where the function exits
directly, which leads to a leak of the runtime PM reference.
Make sure that this error path also releases the runtime PM reference. |
| In the Linux kernel, the following vulnerability has been resolved:
vmci_host: fix a race condition in vmci_host_poll() causing GPF
During fuzzing, a general protection fault is observed in
vmci_host_poll().
general protection fault, probably for non-canonical address 0xdffffc0000000019: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x00000000000000c8-0x00000000000000cf]
RIP: 0010:__lock_acquire+0xf3/0x5e00 kernel/locking/lockdep.c:4926
<- omitting registers ->
Call Trace:
<TASK>
lock_acquire+0x1a4/0x4a0 kernel/locking/lockdep.c:5672
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xb3/0x100 kernel/locking/spinlock.c:162
add_wait_queue+0x3d/0x260 kernel/sched/wait.c:22
poll_wait include/linux/poll.h:49 [inline]
vmci_host_poll+0xf8/0x2b0 drivers/misc/vmw_vmci/vmci_host.c:174
vfs_poll include/linux/poll.h:88 [inline]
do_pollfd fs/select.c:873 [inline]
do_poll fs/select.c:921 [inline]
do_sys_poll+0xc7c/0x1aa0 fs/select.c:1015
__do_sys_ppoll fs/select.c:1121 [inline]
__se_sys_ppoll+0x2cc/0x330 fs/select.c:1101
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x4e/0xa0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Example thread interleaving that causes the general protection fault
is as follows:
CPU1 (vmci_host_poll) CPU2 (vmci_host_do_init_context)
----- -----
// Read uninitialized context
context = vmci_host_dev->context;
// Initialize context
vmci_host_dev->context = vmci_ctx_create();
vmci_host_dev->ct_type = VMCIOBJ_CONTEXT;
if (vmci_host_dev->ct_type == VMCIOBJ_CONTEXT) {
// Dereferencing the wrong pointer
poll_wait(..., &context->host_context);
}
In this scenario, vmci_host_poll() reads vmci_host_dev->context first,
and then reads vmci_host_dev->ct_type to check that
vmci_host_dev->context is initialized. However, since these two reads
are not atomically executed, there is a chance of a race condition as
described above.
To fix this race condition, read vmci_host_dev->context after checking
the value of vmci_host_dev->ct_type so that vmci_host_poll() always
reads an initialized context. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix divide-by-zero in exfat_allocate_bitmap
The variable max_ra_count can be 0 in exfat_allocate_bitmap(),
which causes a divide-by-zero error in the subsequent modulo operation
(i % max_ra_count), leading to a system crash.
When max_ra_count is 0, it means that readahead is not used. This patch
load the bitmap without readahead. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host
SDIO may need addtional 511 bytes to align bus operation. If the tailroom
of this skb is not big enough, we would access invalid memory region.
For low level operation, increase skb size to keep valid memory access in
SDIO host.
Error message:
[69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0
[69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451
[69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1
[69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300]
[69.951] Call Trace:
[69.951] <TASK>
[69.952] dump_stack_lvl+0x49/0x63
[69.952] print_report+0x171/0x4a8
[69.952] kasan_report+0xb4/0x130
[69.952] kasan_check_range+0x149/0x1e0
[69.952] memcpy+0x24/0x70
[69.952] sg_copy_buffer+0xe9/0x1a0
[69.952] sg_copy_to_buffer+0x12/0x20
[69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300]
[69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300]
[69.952] process_one_work+0x7ee/0x1320
[69.952] worker_thread+0x53c/0x1240
[69.952] kthread+0x2b8/0x370
[69.952] ret_from_fork+0x1f/0x30
[69.952] </TASK>
[69.952] Allocated by task 854:
[69.952] kasan_save_stack+0x26/0x50
[69.952] kasan_set_track+0x25/0x30
[69.952] kasan_save_alloc_info+0x1b/0x30
[69.952] __kasan_kmalloc+0x87/0xa0
[69.952] __kmalloc_node_track_caller+0x63/0x150
[69.952] kmalloc_reserve+0x31/0xd0
[69.952] __alloc_skb+0xfc/0x2b0
[69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76]
[69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76]
[69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76]
[69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib]
[69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib]
[69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common]
[69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s]
[69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common]
[69.953] process_one_work+0x7ee/0x1320
[69.953] worker_thread+0x53c/0x1240
[69.953] kthread+0x2b8/0x370
[69.953] ret_from_fork+0x1f/0x30
[69.953] The buggy address belongs to the object at ffff88811c9ce800
which belongs to the cache kmalloc-2k of size 2048
[69.953] The buggy address is located 0 bytes to the right of
2048-byte region [ffff88811c9ce800, ffff88811c9cf000)
[69.953] Memory state around the buggy address:
[69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ^
[69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_eth_soc: fix possible memory leak in mtk_probe()
If mtk_wed_add_hw() has been called, mtk_wed_exit() needs be called
in error path or removing module to free the memory allocated in
mtk_wed_add_hw(). |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix refcount leak in exfat_find
Fix refcount leaks in `exfat_find` related to `exfat_get_dentry_set`.
Function `exfat_get_dentry_set` would increase the reference counter of
`es->bh` on success. Therefore, `exfat_put_dentry_set` must be called
after `exfat_get_dentry_set` to ensure refcount consistency. This patch
relocate two checks to avoid possible leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rw: defer fsnotify calls to task context
We can't call these off the kiocb completion as that might be off
soft/hard irq context. Defer the calls to when we process the
task_work for this request. That avoids valid complaints like:
stack backtrace:
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.0.0-rc6-syzkaller-00321-g105a36f3694e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_usage_bug kernel/locking/lockdep.c:3961 [inline]
valid_state kernel/locking/lockdep.c:3973 [inline]
mark_lock_irq kernel/locking/lockdep.c:4176 [inline]
mark_lock.part.0.cold+0x18/0xd8 kernel/locking/lockdep.c:4632
mark_lock kernel/locking/lockdep.c:4596 [inline]
mark_usage kernel/locking/lockdep.c:4527 [inline]
__lock_acquire+0x11d9/0x56d0 kernel/locking/lockdep.c:5007
lock_acquire kernel/locking/lockdep.c:5666 [inline]
lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631
__fs_reclaim_acquire mm/page_alloc.c:4674 [inline]
fs_reclaim_acquire+0x115/0x160 mm/page_alloc.c:4688
might_alloc include/linux/sched/mm.h:271 [inline]
slab_pre_alloc_hook mm/slab.h:700 [inline]
slab_alloc mm/slab.c:3278 [inline]
__kmem_cache_alloc_lru mm/slab.c:3471 [inline]
kmem_cache_alloc+0x39/0x520 mm/slab.c:3491
fanotify_alloc_fid_event fs/notify/fanotify/fanotify.c:580 [inline]
fanotify_alloc_event fs/notify/fanotify/fanotify.c:813 [inline]
fanotify_handle_event+0x1130/0x3f40 fs/notify/fanotify/fanotify.c:948
send_to_group fs/notify/fsnotify.c:360 [inline]
fsnotify+0xafb/0x1680 fs/notify/fsnotify.c:570
__fsnotify_parent+0x62f/0xa60 fs/notify/fsnotify.c:230
fsnotify_parent include/linux/fsnotify.h:77 [inline]
fsnotify_file include/linux/fsnotify.h:99 [inline]
fsnotify_access include/linux/fsnotify.h:309 [inline]
__io_complete_rw_common+0x485/0x720 io_uring/rw.c:195
io_complete_rw+0x1a/0x1f0 io_uring/rw.c:228
iomap_dio_complete_work fs/iomap/direct-io.c:144 [inline]
iomap_dio_bio_end_io+0x438/0x5e0 fs/iomap/direct-io.c:178
bio_endio+0x5f9/0x780 block/bio.c:1564
req_bio_endio block/blk-mq.c:695 [inline]
blk_update_request+0x3fc/0x1300 block/blk-mq.c:825
scsi_end_request+0x7a/0x9a0 drivers/scsi/scsi_lib.c:541
scsi_io_completion+0x173/0x1f70 drivers/scsi/scsi_lib.c:971
scsi_complete+0x122/0x3b0 drivers/scsi/scsi_lib.c:1438
blk_complete_reqs+0xad/0xe0 block/blk-mq.c:1022
__do_softirq+0x1d3/0x9c6 kernel/softirq.c:571
invoke_softirq kernel/softirq.c:445 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:650
irq_exit_rcu+0x5/0x20 kernel/softirq.c:662
common_interrupt+0xa9/0xc0 arch/x86/kernel/irq.c:240 |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add queue index attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa queue index attr to avoid
such bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: TC, Fix internal port memory leak
The flow rule can be splited, and the extra post_act rules are added
to post_act table. It's possible to trigger memleak when the rule
forwards packets from internal port and over tunnel, in the case that,
for example, CT 'new' state offload is allowed. As int_port object is
assigned to the flow attribute of post_act rule, and its refcnt is
incremented by mlx5e_tc_int_port_get(), but mlx5e_tc_int_port_put() is
not called, the refcnt is never decremented, then int_port is never
freed.
The kmemleak reports the following error:
unreferenced object 0xffff888128204b80 (size 64):
comm "handler20", pid 50121, jiffies 4296973009 (age 642.932s)
hex dump (first 32 bytes):
01 00 00 00 19 00 00 00 03 f0 00 00 04 00 00 00 ................
98 77 67 41 81 88 ff ff 98 77 67 41 81 88 ff ff .wgA.....wgA....
backtrace:
[<00000000e992680d>] kmalloc_trace+0x27/0x120
[<000000009e945a98>] mlx5e_tc_int_port_get+0x3f3/0xe20 [mlx5_core]
[<0000000035a537f0>] mlx5e_tc_add_fdb_flow+0x473/0xcf0 [mlx5_core]
[<0000000070c2cec6>] __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core]
[<000000005cc84048>] mlx5e_configure_flower+0xd40/0x4c40 [mlx5_core]
[<000000004f8a2031>] mlx5e_rep_indr_offload.isra.0+0x10e/0x1c0 [mlx5_core]
[<000000007df797dc>] mlx5e_rep_indr_setup_tc_cb+0x90/0x130 [mlx5_core]
[<0000000016c15cc3>] tc_setup_cb_add+0x1cf/0x410
[<00000000a63305b4>] fl_hw_replace_filter+0x38f/0x670 [cls_flower]
[<000000008bc9e77c>] fl_change+0x1fd5/0x4430 [cls_flower]
[<00000000e7f766e4>] tc_new_tfilter+0x867/0x2010
[<00000000e101c0ef>] rtnetlink_rcv_msg+0x6fc/0x9f0
[<00000000e1111d44>] netlink_rcv_skb+0x12c/0x360
[<0000000082dd6c8b>] netlink_unicast+0x438/0x710
[<00000000fc568f70>] netlink_sendmsg+0x794/0xc50
[<0000000016e92590>] sock_sendmsg+0xc5/0x190
So fix this by moving int_port cleanup code to the flow attribute
free helper, which is used by all the attribute free cases. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Prevent recursive memory reclaim
Function new_inode() returns a new inode with inode->i_mapping->gfp_mask
set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so
allocations in that address space can recurse into filesystem memory
reclaim. We don't want that to happen because it can consume a
significant amount of stack memory.
Worse than that is that it can also deadlock: for example, in several
places, gfs2_unstuff_dinode() is called inside filesystem transactions.
This calls filemap_grab_folio(), which can allocate a new folio, which
can trigger memory reclaim. If memory reclaim recurses into the
filesystem and starts another transaction, a deadlock will ensue.
To fix these kinds of problems, prevent memory reclaim from recursing
into filesystem code by making sure that the gfp_mask of inode address
spaces doesn't include __GFP_FS.
The "meta" and resource group address spaces were already using GFP_NOFS
as their gfp_mask (which doesn't include __GFP_FS). The default value
of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To
avoid being overly limiting, use the default value and only knock off
the __GFP_FS flag. I'm not sure if this will actually make a
difference, but it also shouldn't hurt.
This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack
overflows from page cache allocation").
Fixes xfstest generic/273. |
| In the Linux kernel, the following vulnerability has been resolved:
net: vxlan: prevent NULL deref in vxlan_xmit_one
Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in
vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the
following NULL dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:vxlan_xmit_one+0xbb3/0x1580
Call Trace:
vxlan_xmit+0x429/0x610
dev_hard_start_xmit+0x55/0xa0
__dev_queue_xmit+0x6d0/0x7f0
ip_finish_output2+0x24b/0x590
ip_output+0x63/0x110
Mentioned commits changed the code path in vxlan_xmit_one and as a side
effect the sock4/6 pointer validity checks in vxlan(6)_get_route were
lost. Fix this by adding back checks.
Since both commits being fixed were released in the same version (v6.7)
and are strongly related, bundle the fixes in a single commit. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: of: fix double-free on unregistration
Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal
zone parameters structure"), thermal_zone_device_register() allocates
a copy of the tzp argument and frees it when unregistering, so
thermal_of_zone_register() now ends up leaking its original tzp and
double-freeing the tzp copy. Fix this by locating tzp on stack instead. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix deadlock issue when externel_lb and reset are executed together
When externel_lb and reset are executed together, a deadlock may
occur:
[ 3147.217009] INFO: task kworker/u321:0:7 blocked for more than 120 seconds.
[ 3147.230483] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 3147.238999] task:kworker/u321:0 state:D stack: 0 pid: 7 ppid: 2 flags:0x00000008
[ 3147.248045] Workqueue: hclge hclge_service_task [hclge]
[ 3147.253957] Call trace:
[ 3147.257093] __switch_to+0x7c/0xbc
[ 3147.261183] __schedule+0x338/0x6f0
[ 3147.265357] schedule+0x50/0xe0
[ 3147.269185] schedule_preempt_disabled+0x18/0x24
[ 3147.274488] __mutex_lock.constprop.0+0x1d4/0x5dc
[ 3147.279880] __mutex_lock_slowpath+0x1c/0x30
[ 3147.284839] mutex_lock+0x50/0x60
[ 3147.288841] rtnl_lock+0x20/0x2c
[ 3147.292759] hclge_reset_prepare+0x68/0x90 [hclge]
[ 3147.298239] hclge_reset_subtask+0x88/0xe0 [hclge]
[ 3147.303718] hclge_reset_service_task+0x84/0x120 [hclge]
[ 3147.309718] hclge_service_task+0x2c/0x70 [hclge]
[ 3147.315109] process_one_work+0x1d0/0x490
[ 3147.319805] worker_thread+0x158/0x3d0
[ 3147.324240] kthread+0x108/0x13c
[ 3147.328154] ret_from_fork+0x10/0x18
In externel_lb process, the hns3 driver call napi_disable()
first, then the reset happen, then the restore process of the
externel_lb will fail, and will not call napi_enable(). When
doing externel_lb again, napi_disable() will be double call,
cause a deadlock of rtnl_lock().
This patch use the HNS3_NIC_STATE_DOWN state to protect the
calling of napi_disable() and napi_enable() in externel_lb
process, just as the usage in ndo_stop() and ndo_start(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Disallow unallocated resources to be returned
In the event that the topology requests resources that have not been
created by the system (because they are typically not represented in
dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC
blocks, until their allocation/assignment is being sanity-checked in
"drm/msm/dpu: Reject topologies for which no DSC blocks are available")
remain NULL but will still be returned out of
dpu_rm_get_assigned_resources, where the caller expects to get an array
containing num_blks valid pointers (but instead gets these NULLs).
To prevent this from happening, where null-pointer dereferences
typically result in a hard-to-debug platform lockup, num_blks shouldn't
increase past NULL blocks and will print an error and break instead.
After all, max_blks represents the static size of the maximum number of
blocks whereas the actual amount varies per platform.
^1: which can happen after a git rebase ended up moving additions to
_dpu_cfg to a different struct which has the same patch context.
Patchwork: https://patchwork.freedesktop.org/patch/517636/ |
| In the Linux kernel, the following vulnerability has been resolved:
ping: Fix potentail NULL deref for /proc/net/icmp.
After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid
of rwlock"), we use RCU for ping sockets, but we should use spinlock
for /proc/net/icmp to avoid a potential NULL deref mentioned in
the previous patch.
Let's go back to using spinlock there.
Note we can convert ping sockets to use hlist instead of hlist_nulls
because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl8xxxu: Fix memory leaks with RTL8723BU, RTL8192EU
The wifi + bluetooth combo chip RTL8723BU can leak memory (especially?)
when it's connected to a bluetooth audio device. The busy bluetooth
traffic generates lots of C2H (card to host) messages, which are not
freed correctly.
To fix this, move the dev_kfree_skb() call in rtl8xxxu_c2hcmd_callback()
inside the loop where skb_dequeue() is called.
The RTL8192EU leaks memory because the C2H messages are added to the
queue and left there forever. (This was fine in the past because it
probably wasn't sending any C2H messages until commit e542e66b7c2e
("wifi: rtl8xxxu: gen2: Turn on the rate control"). Since that commit
it sends a C2H message when the TX rate changes.)
To fix this, delete the check for rf_paths > 1 and the goto. Let the
function process the C2H messages from RTL8192EU like the ones from
the other chips.
Theoretically the RTL8188FU could also leak like RTL8723BU, but it
most likely doesn't send C2H messages frequently enough.
This change was tested with RTL8723BU by Erhard F. I tested it with
RTL8188FU and RTL8192EU. |