Search Results (16692 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50699 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: selinux: enable use of both GFP_KERNEL and GFP_ATOMIC in convert_context() The following warning was triggered on a hardware environment: SELinux: Converting 162 SID table entries... BUG: sleeping function called from invalid context at __might_sleep+0x60/0x74 0x0 in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 5943, name: tar CPU: 7 PID: 5943 Comm: tar Tainted: P O 5.10.0 #1 Call trace: dump_backtrace+0x0/0x1c8 show_stack+0x18/0x28 dump_stack+0xe8/0x15c ___might_sleep+0x168/0x17c __might_sleep+0x60/0x74 __kmalloc_track_caller+0xa0/0x7dc kstrdup+0x54/0xac convert_context+0x48/0x2e4 sidtab_context_to_sid+0x1c4/0x36c security_context_to_sid_core+0x168/0x238 security_context_to_sid_default+0x14/0x24 inode_doinit_use_xattr+0x164/0x1e4 inode_doinit_with_dentry+0x1c0/0x488 selinux_d_instantiate+0x20/0x34 security_d_instantiate+0x70/0xbc d_splice_alias+0x4c/0x3c0 ext4_lookup+0x1d8/0x200 [ext4] __lookup_slow+0x12c/0x1e4 walk_component+0x100/0x200 path_lookupat+0x88/0x118 filename_lookup+0x98/0x130 user_path_at_empty+0x48/0x60 vfs_statx+0x84/0x140 vfs_fstatat+0x20/0x30 __se_sys_newfstatat+0x30/0x74 __arm64_sys_newfstatat+0x1c/0x2c el0_svc_common.constprop.0+0x100/0x184 do_el0_svc+0x1c/0x2c el0_svc+0x20/0x34 el0_sync_handler+0x80/0x17c el0_sync+0x13c/0x140 SELinux: Context system_u:object_r:pssp_rsyslog_log_t:s0:c0 is not valid (left unmapped). It was found that within a critical section of spin_lock_irqsave in sidtab_context_to_sid(), convert_context() (hooked by sidtab_convert_params.func) might cause the process to sleep via allocating memory with GFP_KERNEL, which is problematic. As Ondrej pointed out [1], convert_context()/sidtab_convert_params.func has another caller sidtab_convert_tree(), which is okay with GFP_KERNEL. Therefore, fix this problem by adding a gfp_t argument for convert_context()/sidtab_convert_params.func and pass GFP_KERNEL/_ATOMIC properly in individual callers. [PM: wrap long BUG() output lines, tweak subject line]
CVE-2023-54022 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix potential memory leaks at error path for UMP open The allocation and initialization errors at alloc_midi_urbs() that is called at MIDI 2.0 / UMP device are supposed to be handled at the caller side by invoking free_midi_urbs(). However, free_midi_urbs() loops only for ep->num_urbs entries, and since ep->num_entries wasn't updated yet at the allocation / init error in alloc_midi_urbs(), this entry won't be released. The intention of free_midi_urbs() is to release the whole elements, so change the loop size to NUM_URBS to scan over all elements for fixing the missed releases. Also, the call of free_midi_urbs() is missing at snd_usb_midi_v2_open(). Although it'll be released later at reopen/close or disconnection, it's better to release immediately at the error path.
CVE-2023-54009 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: cadence: cdns_i2c_master_xfer(): Fix runtime PM leak on error path The cdns_i2c_master_xfer() function gets a runtime PM reference when the function is entered. This reference is released when the function is exited. There is currently one error path where the function exits directly, which leads to a leak of the runtime PM reference. Make sure that this error path also releases the runtime PM reference.
CVE-2023-54012 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: fix stack overflow when LRO is disabled for virtual interfaces When the virtual interface's feature is updated, it synchronizes the updated feature for its own lower interface. This propagation logic should be worked as the iteration, not recursively. But it works recursively due to the netdev notification unexpectedly. This problem occurs when it disables LRO only for the team and bonding interface type. team0 | +------+------+-----+-----+ | | | | | team1 team2 team3 ... team200 If team0's LRO feature is updated, it generates the NETDEV_FEAT_CHANGE event to its own lower interfaces(team1 ~ team200). It is worked by netdev_sync_lower_features(). So, the NETDEV_FEAT_CHANGE notification logic of each lower interface work iteratively. But generated NETDEV_FEAT_CHANGE event is also sent to the upper interface too. upper interface(team0) generates the NETDEV_FEAT_CHANGE event for its own lower interfaces again. lower and upper interfaces receive this event and generate this event again and again. So, the stack overflow occurs. But it is not the infinite loop issue. Because the netdev_sync_lower_features() updates features before generating the NETDEV_FEAT_CHANGE event. Already synchronized lower interfaces skip notification logic. So, it is just the problem that iteration logic is changed to the recursive unexpectedly due to the notification mechanism. Reproducer: ip link add team0 type team ethtool -K team0 lro on for i in {1..200} do ip link add team$i master team0 type team ethtool -K team$i lro on done ethtool -K team0 lro off In order to fix it, the notifier_ctx member of bonding/team is introduced.
CVE-2025-68356 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Prevent recursive memory reclaim Function new_inode() returns a new inode with inode->i_mapping->gfp_mask set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so allocations in that address space can recurse into filesystem memory reclaim. We don't want that to happen because it can consume a significant amount of stack memory. Worse than that is that it can also deadlock: for example, in several places, gfs2_unstuff_dinode() is called inside filesystem transactions. This calls filemap_grab_folio(), which can allocate a new folio, which can trigger memory reclaim. If memory reclaim recurses into the filesystem and starts another transaction, a deadlock will ensue. To fix these kinds of problems, prevent memory reclaim from recursing into filesystem code by making sure that the gfp_mask of inode address spaces doesn't include __GFP_FS. The "meta" and resource group address spaces were already using GFP_NOFS as their gfp_mask (which doesn't include __GFP_FS). The default value of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To avoid being overly limiting, use the default value and only knock off the __GFP_FS flag. I'm not sure if this will actually make a difference, but it also shouldn't hurt. This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack overflows from page cache allocation"). Fixes xfstest generic/273.
CVE-2025-68353 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: vxlan: prevent NULL deref in vxlan_xmit_one Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the following NULL dereference: BUG: kernel NULL pointer dereference, address: 0000000000000010 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:vxlan_xmit_one+0xbb3/0x1580 Call Trace: vxlan_xmit+0x429/0x610 dev_hard_start_xmit+0x55/0xa0 __dev_queue_xmit+0x6d0/0x7f0 ip_finish_output2+0x24b/0x590 ip_output+0x63/0x110 Mentioned commits changed the code path in vxlan_xmit_one and as a side effect the sock4/6 pointer validity checks in vxlan(6)_get_route were lost. Fix this by adding back checks. Since both commits being fixed were released in the same version (v6.7) and are strongly related, bundle the fixes in a single commit.
CVE-2025-68352 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: ch341: fix out-of-bounds memory access in ch341_transfer_one Discovered by Atuin - Automated Vulnerability Discovery Engine. The 'len' variable is calculated as 'min(32, trans->len + 1)', which includes the 1-byte command header. When copying data from 'trans->tx_buf' to 'ch341->tx_buf + 1', using 'len' as the length is incorrect because: 1. It causes an out-of-bounds read from 'trans->tx_buf' (which has size 'trans->len', i.e., 'len - 1' in this context). 2. It can cause an out-of-bounds write to 'ch341->tx_buf' if 'len' is CH341_PACKET_LENGTH (32). Writing 32 bytes to ch341->tx_buf + 1 overflows the buffer. Fix this by copying 'len - 1' bytes.
CVE-2023-54007 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vmci_host: fix a race condition in vmci_host_poll() causing GPF During fuzzing, a general protection fault is observed in vmci_host_poll(). general protection fault, probably for non-canonical address 0xdffffc0000000019: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000000c8-0x00000000000000cf] RIP: 0010:__lock_acquire+0xf3/0x5e00 kernel/locking/lockdep.c:4926 <- omitting registers -> Call Trace: <TASK> lock_acquire+0x1a4/0x4a0 kernel/locking/lockdep.c:5672 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xb3/0x100 kernel/locking/spinlock.c:162 add_wait_queue+0x3d/0x260 kernel/sched/wait.c:22 poll_wait include/linux/poll.h:49 [inline] vmci_host_poll+0xf8/0x2b0 drivers/misc/vmw_vmci/vmci_host.c:174 vfs_poll include/linux/poll.h:88 [inline] do_pollfd fs/select.c:873 [inline] do_poll fs/select.c:921 [inline] do_sys_poll+0xc7c/0x1aa0 fs/select.c:1015 __do_sys_ppoll fs/select.c:1121 [inline] __se_sys_ppoll+0x2cc/0x330 fs/select.c:1101 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4e/0xa0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Example thread interleaving that causes the general protection fault is as follows: CPU1 (vmci_host_poll) CPU2 (vmci_host_do_init_context) ----- ----- // Read uninitialized context context = vmci_host_dev->context; // Initialize context vmci_host_dev->context = vmci_ctx_create(); vmci_host_dev->ct_type = VMCIOBJ_CONTEXT; if (vmci_host_dev->ct_type == VMCIOBJ_CONTEXT) { // Dereferencing the wrong pointer poll_wait(..., &context->host_context); } In this scenario, vmci_host_poll() reads vmci_host_dev->context first, and then reads vmci_host_dev->ct_type to check that vmci_host_dev->context is initialized. However, since these two reads are not atomically executed, there is a chance of a race condition as described above. To fix this race condition, read vmci_host_dev->context after checking the value of vmci_host_dev->ct_type so that vmci_host_poll() always reads an initialized context.
CVE-2023-54000 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix deadlock issue when externel_lb and reset are executed together When externel_lb and reset are executed together, a deadlock may occur: [ 3147.217009] INFO: task kworker/u321:0:7 blocked for more than 120 seconds. [ 3147.230483] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 3147.238999] task:kworker/u321:0 state:D stack: 0 pid: 7 ppid: 2 flags:0x00000008 [ 3147.248045] Workqueue: hclge hclge_service_task [hclge] [ 3147.253957] Call trace: [ 3147.257093] __switch_to+0x7c/0xbc [ 3147.261183] __schedule+0x338/0x6f0 [ 3147.265357] schedule+0x50/0xe0 [ 3147.269185] schedule_preempt_disabled+0x18/0x24 [ 3147.274488] __mutex_lock.constprop.0+0x1d4/0x5dc [ 3147.279880] __mutex_lock_slowpath+0x1c/0x30 [ 3147.284839] mutex_lock+0x50/0x60 [ 3147.288841] rtnl_lock+0x20/0x2c [ 3147.292759] hclge_reset_prepare+0x68/0x90 [hclge] [ 3147.298239] hclge_reset_subtask+0x88/0xe0 [hclge] [ 3147.303718] hclge_reset_service_task+0x84/0x120 [hclge] [ 3147.309718] hclge_service_task+0x2c/0x70 [hclge] [ 3147.315109] process_one_work+0x1d0/0x490 [ 3147.319805] worker_thread+0x158/0x3d0 [ 3147.324240] kthread+0x108/0x13c [ 3147.328154] ret_from_fork+0x10/0x18 In externel_lb process, the hns3 driver call napi_disable() first, then the reset happen, then the restore process of the externel_lb will fail, and will not call napi_enable(). When doing externel_lb again, napi_disable() will be double call, cause a deadlock of rtnl_lock(). This patch use the HNS3_NIC_STATE_DOWN state to protect the calling of napi_disable() and napi_enable() in externel_lb process, just as the usage in ndo_stop() and ndo_start().
CVE-2023-54006 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data-race around unix_tot_inflight. unix_tot_inflight is changed under spin_lock(unix_gc_lock), but unix_release_sock() reads it locklessly. Let's use READ_ONCE() for unix_tot_inflight. Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix: annote lockless accesses to unix_tot_inflight & gc_in_progress") BUG: KCSAN: data-race in unix_inflight / unix_release_sock write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1: unix_inflight+0x130/0x180 net/unix/scm.c:64 unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123 unix_scm_to_skb net/unix/af_unix.c:1832 [inline] unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0x148/0x160 net/socket.c:747 ____sys_sendmsg+0x4e4/0x610 net/socket.c:2493 ___sys_sendmsg+0xc6/0x140 net/socket.c:2547 __sys_sendmsg+0x94/0x140 net/socket.c:2576 __do_sys_sendmsg net/socket.c:2585 [inline] __se_sys_sendmsg net/socket.c:2583 [inline] __x64_sys_sendmsg+0x45/0x50 net/socket.c:2583 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0: unix_release_sock+0x608/0x910 net/unix/af_unix.c:671 unix_release+0x59/0x80 net/unix/af_unix.c:1058 __sock_release+0x7d/0x170 net/socket.c:653 sock_close+0x19/0x30 net/socket.c:1385 __fput+0x179/0x5e0 fs/file_table.c:321 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x116/0x1a0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297 do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc value changed: 0x00000000 -> 0x00000001 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
CVE-2023-53991 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Disallow unallocated resources to be returned In the event that the topology requests resources that have not been created by the system (because they are typically not represented in dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC blocks, until their allocation/assignment is being sanity-checked in "drm/msm/dpu: Reject topologies for which no DSC blocks are available") remain NULL but will still be returned out of dpu_rm_get_assigned_resources, where the caller expects to get an array containing num_blks valid pointers (but instead gets these NULLs). To prevent this from happening, where null-pointer dereferences typically result in a hard-to-debug platform lockup, num_blks shouldn't increase past NULL blocks and will print an error and break instead. After all, max_blks represents the static size of the maximum number of blocks whereas the actual amount varies per platform. ^1: which can happen after a git rebase ended up moving additions to _dpu_cfg to a different struct which has the same patch context. Patchwork: https://patchwork.freedesktop.org/patch/517636/
CVE-2023-53987 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ping: Fix potentail NULL deref for /proc/net/icmp. After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid of rwlock"), we use RCU for ping sockets, but we should use spinlock for /proc/net/icmp to avoid a potential NULL deref mentioned in the previous patch. Let's go back to using spinlock there. Note we can convert ping sockets to use hlist instead of hlist_nulls because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets.
CVE-2023-53997 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: of: fix double-free on unregistration Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal zone parameters structure"), thermal_zone_device_register() allocates a copy of the tzp argument and frees it when unregistering, so thermal_of_zone_register() now ends up leaking its original tzp and double-freeing the tzp copy. Fix this by locating tzp on stack instead.
CVE-2023-54031 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vdpa: Add queue index attr to vdpa_nl_policy for nlattr length check The vdpa_nl_policy structure is used to validate the nlattr when parsing the incoming nlmsg. It will ensure the attribute being described produces a valid nlattr pointer in info->attrs before entering into each handler in vdpa_nl_ops. That is to say, the missing part in vdpa_nl_policy may lead to illegal nlattr after parsing, which could lead to OOB read just like CVE-2023-3773. This patch adds the missing nla_policy for vdpa queue index attr to avoid such bugs.
CVE-2025-68348 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix memory leak in __blkdev_issue_zero_pages Move the fatal signal check before bio_alloc() to prevent a memory leak when BLKDEV_ZERO_KILLABLE is set and a fatal signal is pending. Previously, the bio was allocated before checking for a fatal signal. If a signal was pending, the code would break out of the loop without freeing or chaining the just-allocated bio, causing a memory leak. This matches the pattern already used in __blkdev_issue_write_zeroes() where the signal check precedes the allocation.
CVE-2023-54019 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/psi: use kernfs polling functions for PSI trigger polling Destroying psi trigger in cgroup_file_release causes UAF issues when a cgroup is removed from under a polling process. This is happening because cgroup removal causes a call to cgroup_file_release while the actual file is still alive. Destroying the trigger at this point would also destroy its waitqueue head and if there is still a polling process on that file accessing the waitqueue, it will step on the freed pointer: do_select vfs_poll do_rmdir cgroup_rmdir kernfs_drain_open_files cgroup_file_release cgroup_pressure_release psi_trigger_destroy wake_up_pollfree(&t->event_wait) // vfs_poll is unblocked synchronize_rcu kfree(t) poll_freewait -> UAF access to the trigger's waitqueue head Patch [1] fixed this issue for epoll() case using wake_up_pollfree(), however the same issue exists for synchronous poll() case. The root cause of this issue is that the lifecycles of the psi trigger's waitqueue and of the file associated with the trigger are different. Fix this by using kernfs_generic_poll function when polling on cgroup-specific psi triggers. It internally uses kernfs_open_node->poll waitqueue head with its lifecycle tied to the file's lifecycle. This also renders the fix in [1] obsolete, so revert it. [1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()")
CVE-2025-68351 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: exfat: fix refcount leak in exfat_find Fix refcount leaks in `exfat_find` related to `exfat_get_dentry_set`. Function `exfat_get_dentry_set` would increase the reference counter of `es->bh` on success. Therefore, `exfat_put_dentry_set` must be called after `exfat_get_dentry_set` to ensure refcount consistency. This patch relocate two checks to avoid possible leaks.
CVE-2023-54046 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: essiv - Handle EBUSY correctly As it is essiv only handles the special return value of EINPROGERSS, which means that in all other cases it will free data related to the request. However, as the caller of essiv may specify MAY_BACKLOG, we also need to expect EBUSY and treat it in the same way. Otherwise backlogged requests will trigger a use-after-free.
CVE-2023-54045 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: audit: fix possible soft lockup in __audit_inode_child() Tracefs or debugfs maybe cause hundreds to thousands of PATH records, too many PATH records maybe cause soft lockup. For example: 1. CONFIG_KASAN=y && CONFIG_PREEMPTION=n 2. auditctl -a exit,always -S open -k key 3. sysctl -w kernel.watchdog_thresh=5 4. mkdir /sys/kernel/debug/tracing/instances/test There may be a soft lockup as follows: watchdog: BUG: soft lockup - CPU#45 stuck for 7s! [mkdir:15498] Kernel panic - not syncing: softlockup: hung tasks Call trace: dump_backtrace+0x0/0x30c show_stack+0x20/0x30 dump_stack+0x11c/0x174 panic+0x27c/0x494 watchdog_timer_fn+0x2bc/0x390 __run_hrtimer+0x148/0x4fc __hrtimer_run_queues+0x154/0x210 hrtimer_interrupt+0x2c4/0x760 arch_timer_handler_phys+0x48/0x60 handle_percpu_devid_irq+0xe0/0x340 __handle_domain_irq+0xbc/0x130 gic_handle_irq+0x78/0x460 el1_irq+0xb8/0x140 __audit_inode_child+0x240/0x7bc tracefs_create_file+0x1b8/0x2a0 trace_create_file+0x18/0x50 event_create_dir+0x204/0x30c __trace_add_new_event+0xac/0x100 event_trace_add_tracer+0xa0/0x130 trace_array_create_dir+0x60/0x140 trace_array_create+0x1e0/0x370 instance_mkdir+0x90/0xd0 tracefs_syscall_mkdir+0x68/0xa0 vfs_mkdir+0x21c/0x34c do_mkdirat+0x1b4/0x1d4 __arm64_sys_mkdirat+0x4c/0x60 el0_svc_common.constprop.0+0xa8/0x240 do_el0_svc+0x8c/0xc0 el0_svc+0x20/0x30 el0_sync_handler+0xb0/0xb4 el0_sync+0x160/0x180 Therefore, we add cond_resched() to __audit_inode_child() to fix it.
CVE-2023-54051 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: do not allow gso_size to be set to GSO_BY_FRAGS One missing check in virtio_net_hdr_to_skb() allowed syzbot to crash kernels again [1] Do not allow gso_size to be set to GSO_BY_FRAGS (0xffff), because this magic value is used by the kernel. [1] general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077] CPU: 0 PID: 5039 Comm: syz-executor401 Not tainted 6.5.0-rc5-next-20230809-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023 RIP: 0010:skb_segment+0x1a52/0x3ef0 net/core/skbuff.c:4500 Code: 00 00 00 e9 ab eb ff ff e8 6b 96 5d f9 48 8b 84 24 00 01 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e ea 21 00 00 48 8b 84 24 00 01 RSP: 0018:ffffc90003d3f1c8 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 000000000001fffe RCX: 0000000000000000 RDX: 000000000000000e RSI: ffffffff882a3115 RDI: 0000000000000070 RBP: ffffc90003d3f378 R08: 0000000000000005 R09: 000000000000ffff R10: 000000000000ffff R11: 5ee4a93e456187d6 R12: 000000000001ffc6 R13: dffffc0000000000 R14: 0000000000000008 R15: 000000000000ffff FS: 00005555563f2380(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020020000 CR3: 000000001626d000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> udp6_ufo_fragment+0x9d2/0xd50 net/ipv6/udp_offload.c:109 ipv6_gso_segment+0x5c4/0x17b0 net/ipv6/ip6_offload.c:120 skb_mac_gso_segment+0x292/0x610 net/core/gso.c:53 __skb_gso_segment+0x339/0x710 net/core/gso.c:124 skb_gso_segment include/net/gso.h:83 [inline] validate_xmit_skb+0x3a5/0xf10 net/core/dev.c:3625 __dev_queue_xmit+0x8f0/0x3d60 net/core/dev.c:4329 dev_queue_xmit include/linux/netdevice.h:3082 [inline] packet_xmit+0x257/0x380 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3087 [inline] packet_sendmsg+0x24c7/0x5570 net/packet/af_packet.c:3119 sock_sendmsg_nosec net/socket.c:727 [inline] sock_sendmsg+0xd9/0x180 net/socket.c:750 ____sys_sendmsg+0x6ac/0x940 net/socket.c:2496 ___sys_sendmsg+0x135/0x1d0 net/socket.c:2550 __sys_sendmsg+0x117/0x1e0 net/socket.c:2579 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7ff27cdb34d9