| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
spmi: Add a check for remove callback when removing a SPMI driver
When removing a SPMI driver, there can be a crash due to NULL pointer
dereference if it does not have a remove callback defined. This is
one such call trace observed when removing the QCOM SPMI PMIC driver:
dump_backtrace.cfi_jt+0x0/0x8
dump_stack_lvl+0xd8/0x16c
panic+0x188/0x498
__cfi_slowpath+0x0/0x214
__cfi_slowpath+0x1dc/0x214
spmi_drv_remove+0x16c/0x1e0
device_release_driver_internal+0x468/0x79c
driver_detach+0x11c/0x1a0
bus_remove_driver+0xc4/0x124
driver_unregister+0x58/0x84
cleanup_module+0x1c/0xc24 [qcom_spmi_pmic]
__do_sys_delete_module+0x3ec/0x53c
__arm64_sys_delete_module+0x18/0x28
el0_svc_common+0xdc/0x294
el0_svc+0x38/0x9c
el0_sync_handler+0x8c/0xf0
el0_sync+0x1b4/0x1c0
If a driver has all its resources allocated through devm_() APIs and
does not need any other explicit cleanup, it would not require a
remove callback to be defined. Hence, add a check for remove callback
presence before calling it when removing a SPMI driver. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Prevent handling any completions after qp destroy
HW may generate completions that indicates QP is destroyed.
Driver should not be scheduling any more completion handlers
for this QP, after the QP is destroyed. Since CQs are active
during the QP destroy, driver may still schedule completion
handlers. This can cause a race where the destroy_cq and poll_cq
running simultaneously.
Snippet of kernel panic while doing bnxt_re driver load unload in loop.
This indicates a poll after the CQ is freed.
[77786.481636] Call Trace:
[77786.481640] <TASK>
[77786.481644] bnxt_re_poll_cq+0x14a/0x620 [bnxt_re]
[77786.481658] ? kvm_clock_read+0x14/0x30
[77786.481693] __ib_process_cq+0x57/0x190 [ib_core]
[77786.481728] ib_cq_poll_work+0x26/0x80 [ib_core]
[77786.481761] process_one_work+0x1e5/0x3f0
[77786.481768] worker_thread+0x50/0x3a0
[77786.481785] ? __pfx_worker_thread+0x10/0x10
[77786.481790] kthread+0xe2/0x110
[77786.481794] ? __pfx_kthread+0x10/0x10
[77786.481797] ret_from_fork+0x2c/0x50
To avoid this, complete all completion handlers before returning the
destroy QP. If free_cq is called soon after destroy_qp, IB stack
will cancel the CQ work before invoking the destroy_cq verb and
this will prevent any race mentioned. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memleak when insert_old_idx() failed
Following process will cause a memleak for copied up znode:
dirty_cow_znode
zn = copy_znode(c, znode);
err = insert_old_idx(c, zbr->lnum, zbr->offs);
if (unlikely(err))
return ERR_PTR(err); // No one refers to zn.
Fetch a reproducer in [Link].
Function copy_znode() is split into 2 parts: resource allocation
and znode replacement, insert_old_idx() is split in similar way,
so resource cleanup could be done in error handling path without
corrupting metadata(mem & disk).
It's okay that old index inserting is put behind of add_idx_dirt(),
old index is used in layout_leb_in_gaps(), so the two processes do
not depend on each other. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: fix skb leak by txs missing in AMSDU
txs may be dropped if the frame is aggregated in AMSDU. When the problem
shows up, some SKBs would be hold in driver to cause network stopped
temporarily. Even if the problem can be recovered by txs timeout handling,
mt7921 still need to disable txs in AMSDU to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix memory leak of PBLE objects
On rmmod of irdma, the PBLE object memory is not being freed. PBLE object
memory are not statically pre-allocated at function initialization time
unlike other HMC objects. PBLEs objects and the Segment Descriptors (SD)
for it can be dynamically allocated during scale up and SD's remain
allocated till function deinitialization.
Fix this leak by adding IRDMA_HMC_IW_PBLE to the iw_hmc_obj_types[] table
and skip pbles in irdma_create_hmc_obj but not in irdma_del_hmc_objects(). |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Check if ffa_driver remove is present before executing
Currently ffa_drv->remove() is called unconditionally from
ffa_device_remove(). Since the driver registration doesn't check for it
and allows it to be registered without .remove callback, we need to check
for the presence of it before executing it from ffa_device_remove() to
above a NULL pointer dereference like the one below:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000086000004
| EC = 0x21: IABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x04: level 0 translation fault
| user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881cc8000
| [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
| Internal error: Oops: 0000000086000004 [#1] PREEMPT SMP
| CPU: 3 PID: 130 Comm: rmmod Not tainted 6.3.0-rc7 #6
| Hardware name: FVP Base RevC (DT)
| pstate: 63402809 (nZCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=-c)
| pc : 0x0
| lr : ffa_device_remove+0x20/0x2c
| Call trace:
| 0x0
| device_release_driver_internal+0x16c/0x260
| driver_detach+0x90/0xd0
| bus_remove_driver+0xdc/0x11c
| driver_unregister+0x30/0x54
| ffa_driver_unregister+0x14/0x20
| cleanup_module+0x18/0xeec
| __arm64_sys_delete_module+0x234/0x378
| invoke_syscall+0x40/0x108
| el0_svc_common+0xb4/0xf0
| do_el0_svc+0x30/0xa4
| el0_svc+0x2c/0x7c
| el0t_64_sync_handler+0x84/0xf0
| el0t_64_sync+0x190/0x194 |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix OOB read in indx_insert_into_buffer
Syzbot reported a OOB read bug:
BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0
fs/ntfs3/index.c:1755
Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630
Call Trace:
<TASK>
memmove+0x25/0x60 mm/kasan/shadow.c:54
indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755
indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863
ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548
ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100
lookup_open fs/namei.c:3413 [inline]
If the member struct INDEX_BUFFER *index of struct indx_node is
incorrect, that is, the value of __le32 used is greater than the value
of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when
memmove is called in indx_insert_into_buffer().
Fix this by adding a check in hdr_find_e(). |
| In the Linux kernel, the following vulnerability has been resolved:
ipmi:ssif: Fix a memory leak when scanning for an adapter
The adapter scan ssif_info_find() sets info->adapter_name if the adapter
info came from SMBIOS, as it's not set in that case. However, this
function can be called more than once, and it will leak the adapter name
if it had already been set. So check for NULL before setting it. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: realtek: fix out-of-bounds access
The probe function sets priv->chip_data to (void *)priv + sizeof(*priv)
with the expectation that priv has enough trailing space.
However, only realtek-smi actually allocated this chip_data space.
Do likewise in realtek-mdio to fix out-of-bounds accesses.
These accesses likely went unnoticed so far, because of an (unused)
buf[4096] member in struct realtek_priv, which caused kmalloc to
round up the allocated buffer to a big enough size, so nothing of
value was overwritten. With a different allocator (like in the barebox
bootloader port of the driver) or with KASAN, the memory corruption
becomes quickly apparent. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to call f2fs_wait_on_page_writeback() in f2fs_write_raw_pages()
BUG_ON() will be triggered when writing files concurrently,
because the same page is writtenback multiple times.
1597 void folio_end_writeback(struct folio *folio)
1598 {
......
1618 if (!__folio_end_writeback(folio))
1619 BUG();
......
1625 }
kernel BUG at mm/filemap.c:1619!
Call Trace:
<TASK>
f2fs_write_end_io+0x1a0/0x370
blk_update_request+0x6c/0x410
blk_mq_end_request+0x15/0x130
blk_complete_reqs+0x3c/0x50
__do_softirq+0xb8/0x29b
? sort_range+0x20/0x20
run_ksoftirqd+0x19/0x20
smpboot_thread_fn+0x10b/0x1d0
kthread+0xde/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
Below is the concurrency scenario:
[Process A] [Process B] [Process C]
f2fs_write_raw_pages()
- redirty_page_for_writepage()
- unlock page()
f2fs_do_write_data_page()
- lock_page()
- clear_page_dirty_for_io()
- set_page_writeback() [1st writeback]
.....
- unlock page()
generic_perform_write()
- f2fs_write_begin()
- wait_for_stable_page()
- f2fs_write_end()
- set_page_dirty()
- lock_page()
- f2fs_do_write_data_page()
- set_page_writeback() [2st writeback]
This problem was introduced by the previous commit 7377e853967b ("f2fs:
compress: fix potential deadlock of compress file"). All pagelocks were
released in f2fs_write_raw_pages(), but whether the page was
in the writeback state was ignored in the subsequent writing process.
Let's fix it by waiting for the page to writeback before writing. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix BUG in ext4_mb_new_inode_pa() due to overflow
When we calculate the end position of ext4_free_extent, this position may
be exactly where ext4_lblk_t (i.e. uint) overflows. For example, if
ac_g_ex.fe_logical is 4294965248 and ac_orig_goal_len is 2048, then the
computed end is 0x100000000, which is 0. If ac->ac_o_ex.fe_logical is not
the first case of adjusting the best extent, that is, new_bex_end > 0, the
following BUG_ON will be triggered:
=========================================================
kernel BUG at fs/ext4/mballoc.c:5116!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 673 Comm: xfs_io Tainted: G E 6.5.0-rc1+ #279
RIP: 0010:ext4_mb_new_inode_pa+0xc5/0x430
Call Trace:
<TASK>
ext4_mb_use_best_found+0x203/0x2f0
ext4_mb_try_best_found+0x163/0x240
ext4_mb_regular_allocator+0x158/0x1550
ext4_mb_new_blocks+0x86a/0xe10
ext4_ext_map_blocks+0xb0c/0x13a0
ext4_map_blocks+0x2cd/0x8f0
ext4_iomap_begin+0x27b/0x400
iomap_iter+0x222/0x3d0
__iomap_dio_rw+0x243/0xcb0
iomap_dio_rw+0x16/0x80
=========================================================
A simple reproducer demonstrating the problem:
mkfs.ext4 -F /dev/sda -b 4096 100M
mount /dev/sda /tmp/test
fallocate -l1M /tmp/test/tmp
fallocate -l10M /tmp/test/file
fallocate -i -o 1M -l16777203M /tmp/test/file
fsstress -d /tmp/test -l 0 -n 100000 -p 8 &
sleep 10 && killall -9 fsstress
rm -f /tmp/test/tmp
xfs_io -c "open -ad /tmp/test/file" -c "pwrite -S 0xff 0 8192"
We simply refactor the logic for adjusting the best extent by adding
a temporary ext4_free_extent ex and use extent_logical_end() to avoid
overflow, which also simplifies the code. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: use work to update rate to avoid RCU warning
The ieee80211_ops::sta_rc_update must be atomic, because
ieee80211_chan_bw_change() holds rcu_read lock while calling
drv_sta_rc_update(), so create a work to do original things.
Voluntary context switch within RCU read-side critical section!
WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318
rcu_note_context_switch+0x571/0x5d0
CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE
Workqueue: phy3 ieee80211_chswitch_work [mac80211]
RIP: 0010:rcu_note_context_switch+0x571/0x5d0
Call Trace:
<TASK>
__schedule+0xb0/0x1460
? __mod_timer+0x116/0x360
schedule+0x5a/0xc0
schedule_timeout+0x87/0x150
? trace_raw_output_tick_stop+0x60/0x60
wait_for_completion_timeout+0x7b/0x140
usb_start_wait_urb+0x82/0x160 [usbcore
usb_control_msg+0xe3/0x140 [usbcore
rtw_usb_read+0x88/0xe0 [rtw_usb
rtw_usb_read8+0xf/0x10 [rtw_usb
rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core
rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core
drv_sta_rc_update+0x7c/0x160 [mac80211
ieee80211_chan_bw_change+0xfb/0x110 [mac80211
ieee80211_change_chanctx+0x38/0x130 [mac80211
ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211
ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211
ieee80211_chswitch_work+0x95/0x170 [mac80211
process_one_work+0x201/0x410
worker_thread+0x4a/0x3b0
? process_one_work+0x410/0x410
kthread+0xe1/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fix potential memory leak in mlx5e_init_rep_rx
The memory pointed to by the priv->rx_res pointer is not freed in the error
path of mlx5e_init_rep_rx, which can lead to a memory leak. Fix by freeing
the memory in the error path, thereby making the error path identical to
mlx5e_cleanup_rep_rx(). |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix missed ses refcounting
Use new cifs_smb_ses_inc_refcount() helper to get an active reference
of @ses and @ses->dfs_root_ses (if set). This will prevent
@ses->dfs_root_ses of being put in the next call to cifs_put_smb_ses()
and thus potentially causing an use-after-free bug. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix memory leak if ntfs_read_mft failed
Label ATTR_ROOT in ntfs_read_mft() sets is_root = true and
ni->ni_flags |= NI_FLAG_DIR, then next attr will goto label ATTR_ALLOC
and alloc ni->dir.alloc_run. However two states are not always
consistent and can make memory leak.
1) attr_name in ATTR_ROOT does not fit the condition it will set
is_root = true but NI_FLAG_DIR is not set.
2) next attr_name in ATTR_ALLOC fits the condition and alloc
ni->dir.alloc_run
3) in cleanup function ni_clear(), when NI_FLAG_DIR is set, it frees
ni->dir.alloc_run, otherwise it frees ni->file.run
4) because NI_FLAG_DIR is not set in this case, ni->dir.alloc_run is
leaked as kmemleak reported:
unreferenced object 0xffff888003bc5480 (size 64):
backtrace:
[<000000003d42e6b0>] __kmalloc_node+0x4e/0x1c0
[<00000000d8e19b8a>] kvmalloc_node+0x39/0x1f0
[<00000000fc3eb5b8>] run_add_entry+0x18a/0xa40 [ntfs3]
[<0000000011c9f978>] run_unpack+0x75d/0x8e0 [ntfs3]
[<00000000e7cf1819>] run_unpack_ex+0xbc/0x500 [ntfs3]
[<00000000bbf0a43d>] ntfs_iget5+0xb25/0x2dd0 [ntfs3]
[<00000000a6e50693>] ntfs_fill_super+0x218d/0x3580 [ntfs3]
[<00000000b9170608>] get_tree_bdev+0x3fb/0x710
[<000000004833798a>] vfs_get_tree+0x8e/0x280
[<000000006e20b8e6>] path_mount+0xf3c/0x1930
[<000000007bf15a5f>] do_mount+0xf3/0x110
...
Fix this by always setting is_root and NI_FLAG_DIR together. |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: bq27xxx: Fix poll_interval handling and races on remove
Before this patch bq27xxx_battery_teardown() was setting poll_interval = 0
to avoid bq27xxx_battery_update() requeuing the delayed_work item.
There are 2 problems with this:
1. If the driver is unbound through sysfs, rather then the module being
rmmod-ed, this changes poll_interval unexpectedly
2. This is racy, after it being set poll_interval could be changed
before bq27xxx_battery_update() checks it through
/sys/module/bq27xxx_battery/parameters/poll_interval
Fix this by added a removed attribute to struct bq27xxx_device_info and
using that instead of setting poll_interval to 0.
There also is another poll_interval related race on remove(), writing
/sys/module/bq27xxx_battery/parameters/poll_interval will requeue
the delayed_work item for all devices on the bq27xxx_battery_devices
list and the device being removed was only removed from that list
after cancelling the delayed_work item.
Fix this by moving the removal from the bq27xxx_battery_devices list
to before cancelling the delayed_work item. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: firewire-digi00x: prevent potential use after free
This code was supposed to return an error code if init_stream()
failed, but it instead freed dg00x->rx_stream and returned success.
This potentially leads to a use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_pmem: add the missing REQ_OP_WRITE for flush bio
When doing mkfs.xfs on a pmem device, the following warning was
------------[ cut here ]------------
WARNING: CPU: 2 PID: 384 at block/blk-core.c:751 submit_bio_noacct
Modules linked in:
CPU: 2 PID: 384 Comm: mkfs.xfs Not tainted 6.4.0-rc7+ #154
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:submit_bio_noacct+0x340/0x520
......
Call Trace:
<TASK>
? submit_bio_noacct+0xd5/0x520
submit_bio+0x37/0x60
async_pmem_flush+0x79/0xa0
nvdimm_flush+0x17/0x40
pmem_submit_bio+0x370/0x390
__submit_bio+0xbc/0x190
submit_bio_noacct_nocheck+0x14d/0x370
submit_bio_noacct+0x1ef/0x520
submit_bio+0x55/0x60
submit_bio_wait+0x5a/0xc0
blkdev_issue_flush+0x44/0x60
The root cause is that submit_bio_noacct() needs bio_op() is either
WRITE or ZONE_APPEND for flush bio and async_pmem_flush() doesn't assign
REQ_OP_WRITE when allocating flush bio, so submit_bio_noacct just fail
the flush bio.
Simply fix it by adding the missing REQ_OP_WRITE for flush bio. And we
could fix the flush order issue and do flush optimization later. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix memory leak in drm_client_target_cloned
dmt_mode is allocated and never freed in this function.
It was found with the ast driver, but most drivers using generic fbdev
setup are probably affected.
This fixes the following kmemleak report:
backtrace:
[<00000000b391296d>] drm_mode_duplicate+0x45/0x220 [drm]
[<00000000e45bb5b3>] drm_client_target_cloned.constprop.0+0x27b/0x480 [drm]
[<00000000ed2d3a37>] drm_client_modeset_probe+0x6bd/0xf50 [drm]
[<0000000010e5cc9d>] __drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper]
[<00000000909f82ca>] drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper]
[<00000000063a69aa>] drm_client_register+0x169/0x240 [drm]
[<00000000a8c61525>] ast_pci_probe+0x142/0x190 [ast]
[<00000000987f19bb>] local_pci_probe+0xdc/0x180
[<000000004fca231b>] work_for_cpu_fn+0x4e/0xa0
[<0000000000b85301>] process_one_work+0x8b7/0x1540
[<000000003375b17c>] worker_thread+0x70a/0xed0
[<00000000b0d43cd9>] kthread+0x29f/0x340
[<000000008d770833>] ret_from_fork+0x1f/0x30
unreferenced object 0xff11000333089a00 (size 128): |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/iommu: Fix notifiers being shared by PCI and VIO buses
fail_iommu_setup() registers the fail_iommu_bus_notifier struct to both
PCI and VIO buses. struct notifier_block is a linked list node, so this
causes any notifiers later registered to either bus type to also be
registered to the other since they share the same node.
This causes issues in (at least) the vgaarb code, which registers a
notifier for PCI buses. pci_notify() ends up being called on a vio
device, converted with to_pci_dev() even though it's not a PCI device,
and finally makes a bad access in vga_arbiter_add_pci_device() as
discovered with KASAN:
BUG: KASAN: slab-out-of-bounds in vga_arbiter_add_pci_device+0x60/0xe00
Read of size 4 at addr c000000264c26fdc by task swapper/0/1
Call Trace:
dump_stack_lvl+0x1bc/0x2b8 (unreliable)
print_report+0x3f4/0xc60
kasan_report+0x244/0x698
__asan_load4+0xe8/0x250
vga_arbiter_add_pci_device+0x60/0xe00
pci_notify+0x88/0x444
notifier_call_chain+0x104/0x320
blocking_notifier_call_chain+0xa0/0x140
device_add+0xac8/0x1d30
device_register+0x58/0x80
vio_register_device_node+0x9ac/0xce0
vio_bus_scan_register_devices+0xc4/0x13c
__machine_initcall_pseries_vio_device_init+0x94/0xf0
do_one_initcall+0x12c/0xaa8
kernel_init_freeable+0xa48/0xba8
kernel_init+0x64/0x400
ret_from_kernel_thread+0x5c/0x64
Fix this by creating separate notifier_block structs for each bus type.
[mpe: Add #ifdef to fix CONFIG_IBMVIO=n build] |