| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
swiotlb: fix out-of-bounds TLB allocations with CONFIG_SWIOTLB_DYNAMIC
Limit the free list length to the size of the IO TLB. Transient pool can be
smaller than IO_TLB_SEGSIZE, but the free list is initialized with the
assumption that the total number of slots is a multiple of IO_TLB_SEGSIZE.
As a result, swiotlb_area_find_slots() may allocate slots past the end of
a transient IO TLB buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: avoid data corruption caused by decline
We found a data corruption issue during testing of SMC-R on Redis
applications.
The benchmark has a low probability of reporting a strange error as
shown below.
"Error: Protocol error, got "\xe2" as reply type byte"
Finally, we found that the retrieved error data was as follows:
0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C
0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2
It is quite obvious that this is a SMC DECLINE message, which means that
the applications received SMC protocol message.
We found that this was caused by the following situations:
client server
¦ clc proposal
------------->
¦ clc accept
<-------------
¦ clc confirm
------------->
wait llc confirm
send llc confirm
¦failed llc confirm
¦ x------
(after 2s)timeout
wait llc confirm rsp
wait decline
(after 1s) timeout
(after 2s) timeout
¦ decline
-------------->
¦ decline
<--------------
As a result, a decline message was sent in the implementation, and this
message was read from TCP by the already-fallback connection.
This patch double the client timeout as 2x of the server value,
With this simple change, the Decline messages should never cross or
collide (during Confirm link timeout).
This issue requires an immediate solution, since the protocol updates
involve a more long-term solution. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: avoid format-overflow warning
With gcc and W=1 option, there's a warning like this:
fs/f2fs/compress.c: In function ‘f2fs_init_page_array_cache’:
fs/f2fs/compress.c:1984:47: error: ‘%u’ directive writing between
1 and 7 bytes into a region of size between 5 and 8
[-Werror=format-overflow=]
1984 | sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev),
MINOR(dev));
| ^~
String "f2fs_page_array_entry-%u:%u" can up to 35. The first "%u" can up
to 4 and the second "%u" can up to 7, so total size is "24 + 4 + 7 = 35".
slab_name's size should be 35 rather than 32. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix the pre-flush when appending to a file in writethrough mode
In netfs_perform_write(), when the file is marked NETFS_ICTX_WRITETHROUGH
or O_*SYNC or RWF_*SYNC was specified, write-through caching is performed
on a buffered file. When setting up for write-through, we flush any
conflicting writes in the region and wait for the write to complete,
failing if there's a write error to return.
The issue arises if we're writing at or above the EOF position because we
skip the flush and - more importantly - the wait. This becomes a problem
if there's a partial folio at the end of the file that is being written out
and we want to make a write to it too. Both the already-running write and
the write we start both want to clear the writeback mark, but whoever is
second causes a warning looking something like:
------------[ cut here ]------------
R=00000012: folio 11 is not under writeback
WARNING: CPU: 34 PID: 654 at fs/netfs/write_collect.c:105
...
CPU: 34 PID: 654 Comm: kworker/u386:27 Tainted: G S ...
...
Workqueue: events_unbound netfs_write_collection_worker
...
RIP: 0010:netfs_writeback_lookup_folio
Fix this by making the flush-and-wait unconditional. It will do nothing if
there are no folios in the pagecache and will return quickly if there are
no folios in the region specified.
Further, move the WBC attachment above the flush call as the flush is going
to attach a WBC and detach it again if it is not present - and since we
need one anyway we might as well share it. |
| In the Linux kernel, the following vulnerability has been resolved:
ata: sata_dwc_460ex: Fix crash due to OOB write
the driver uses libata's "tag" values from in various arrays.
Since the mentioned patch bumped the ATA_TAG_INTERNAL to 32,
the value of the SATA_DWC_QCMD_MAX needs to account for that.
Otherwise ATA_TAG_INTERNAL usage cause similar crashes like
this as reported by Tice Rex on the OpenWrt Forum and
reproduced (with symbols) here:
| BUG: Kernel NULL pointer dereference at 0x00000000
| Faulting instruction address: 0xc03ed4b8
| Oops: Kernel access of bad area, sig: 11 [#1]
| BE PAGE_SIZE=4K PowerPC 44x Platform
| CPU: 0 PID: 362 Comm: scsi_eh_1 Not tainted 5.4.163 #0
| NIP: c03ed4b8 LR: c03d27e8 CTR: c03ed36c
| REGS: cfa59950 TRAP: 0300 Not tainted (5.4.163)
| MSR: 00021000 <CE,ME> CR: 42000222 XER: 00000000
| DEAR: 00000000 ESR: 00000000
| GPR00: c03d27e8 cfa59a08 cfa55fe0 00000000 0fa46bc0 [...]
| [..]
| NIP [c03ed4b8] sata_dwc_qc_issue+0x14c/0x254
| LR [c03d27e8] ata_qc_issue+0x1c8/0x2dc
| Call Trace:
| [cfa59a08] [c003f4e0] __cancel_work_timer+0x124/0x194 (unreliable)
| [cfa59a78] [c03d27e8] ata_qc_issue+0x1c8/0x2dc
| [cfa59a98] [c03d2b3c] ata_exec_internal_sg+0x240/0x524
| [cfa59b08] [c03d2e98] ata_exec_internal+0x78/0xe0
| [cfa59b58] [c03d30fc] ata_read_log_page.part.38+0x1dc/0x204
| [cfa59bc8] [c03d324c] ata_identify_page_supported+0x68/0x130
| [...]
This is because sata_dwc_dma_xfer_complete() NULLs the
dma_pending's next neighbour "chan" (a *dma_chan struct) in
this '32' case right here (line ~735):
> hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
Then the next time, a dma gets issued; dma_dwc_xfer_setup() passes
the NULL'd hsdevp->chan to the dmaengine_slave_config() which then
causes the crash.
With this patch, SATA_DWC_QCMD_MAX is now set to ATA_MAX_QUEUE + 1.
This avoids the OOB. But please note, there was a worthwhile discussion
on what ATA_TAG_INTERNAL and ATA_MAX_QUEUE is. And why there should not
be a "fake" 33 command-long queue size.
Ideally, the dw driver should account for the ATA_TAG_INTERNAL.
In Damien Le Moal's words: "... having looked at the driver, it
is a bigger change than just faking a 33rd "tag" that is in fact
not a command tag at all."
BugLink: https://github.com/openwrt/openwrt/issues/9505 |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: aqc111: Fix out-of-bounds accesses in RX fixup
aqc111_rx_fixup() contains several out-of-bounds accesses that can be
triggered by a malicious (or defective) USB device, in particular:
- The metadata array (desc_offset..desc_offset+2*pkt_count) can be out of bounds,
causing OOB reads and (on big-endian systems) OOB endianness flips.
- A packet can overlap the metadata array, causing a later OOB
endianness flip to corrupt data used by a cloned SKB that has already
been handed off into the network stack.
- A packet SKB can be constructed whose tail is far beyond its end,
causing out-of-bounds heap data to be considered part of the SKB's
data.
Found doing variant analysis. Tested it with another driver (ax88179_178a), since
I don't have a aqc111 device to test it, but the code looks very similar. |
| In the Linux kernel, the following vulnerability has been resolved:
dm integrity: fix memory corruption when tag_size is less than digest size
It is possible to set up dm-integrity in such a way that the
"tag_size" parameter is less than the actual digest size. In this
situation, a part of the digest beyond tag_size is ignored.
In this case, dm-integrity would write beyond the end of the
ic->recalc_tags array and corrupt memory. The corruption happened in
integrity_recalc->integrity_sector_checksum->crypto_shash_final.
Fix this corruption by increasing the tags array so that it has enough
padding at the end to accomodate the loop in integrity_recalc() being
able to write a full digest size for the last member of the tags
array. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: use aligned address in copy_user_gigantic_page()
In current kernel, hugetlb_wp() calls copy_user_large_folio() with the
fault address. Where the fault address may be not aligned with the huge
page size. Then, copy_user_large_folio() may call
copy_user_gigantic_page() with the address, while
copy_user_gigantic_page() requires the address to be huge page size
aligned. So, this may cause memory corruption or information leak,
addtional, use more obvious naming 'addr_hint' instead of 'addr' for
copy_user_gigantic_page(). |
| A vulnerability has been identified in SENTRON 7KT PAC1260 Data Manager (All versions). The web interface of affected devices does not sanitize the input parameters in specific GET requests. This could allow an authenticated remote attacker to execute arbitrary code with root privileges. |
| A vulnerability has been identified in SENTRON 7KT PAC1260 Data Manager (All versions). The web interface of affected devices does not sanitize the language parameter in specific POST requests. This could allow an authenticated remote attacker to execute arbitrary code with root privileges. |
| A vulnerability has been identified in SENTRON 7KT PAC1260 Data Manager (All versions). The web interface of affected devices does not sanitize the region parameter in specific POST requests. This could allow an authenticated remote attacker to execute arbitrary code with root privileges. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file.
This could allow an attacker to execute code in the context of the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix memory corruption bug with suspend and rebuild
The ice driver would previously panic after suspend. This is caused
from the driver *only* calling the ice_vsi_free_q_vectors() function by
itself, when it is suspending. Since commit b3e7b3a6ee92 ("ice: prevent
NULL pointer deref during reload") the driver has zeroed out
num_q_vectors, and only restored it in ice_vsi_cfg_def().
This further causes the ice_rebuild() function to allocate a zero length
buffer, after which num_q_vectors is updated, and then the new value of
num_q_vectors is used to index into the zero length buffer, which
corrupts memory.
The fix entails making sure all the code referencing num_q_vectors only
does so after it has been reset via ice_vsi_cfg_def().
I didn't perform a full bisect, but I was able to test against 6.1.77
kernel and that ice driver works fine for suspend/resume with no panic,
so sometime since then, this problem was introduced.
Also clean up an un-needed init of a local variable in the function
being modified.
PANIC from 6.8.0-rc1:
[1026674.915596] PM: suspend exit
[1026675.664697] ice 0000:17:00.1: PTP reset successful
[1026675.664707] ice 0000:17:00.1: 2755 msecs passed between update to cached PHC time
[1026675.667660] ice 0000:b1:00.0: PTP reset successful
[1026675.675944] ice 0000:b1:00.0: 2832 msecs passed between update to cached PHC time
[1026677.137733] ixgbe 0000:31:00.0 ens787: NIC Link is Up 1 Gbps, Flow Control: None
[1026677.190201] BUG: kernel NULL pointer dereference, address: 0000000000000010
[1026677.192753] ice 0000:17:00.0: PTP reset successful
[1026677.192764] ice 0000:17:00.0: 4548 msecs passed between update to cached PHC time
[1026677.197928] #PF: supervisor read access in kernel mode
[1026677.197933] #PF: error_code(0x0000) - not-present page
[1026677.197937] PGD 1557a7067 P4D 0
[1026677.212133] ice 0000:b1:00.1: PTP reset successful
[1026677.212143] ice 0000:b1:00.1: 4344 msecs passed between update to cached PHC time
[1026677.212575]
[1026677.243142] Oops: 0000 [#1] PREEMPT SMP NOPTI
[1026677.247918] CPU: 23 PID: 42790 Comm: kworker/23:0 Kdump: loaded Tainted: G W 6.8.0-rc1+ #1
[1026677.257989] Hardware name: Intel Corporation M50CYP2SBSTD/M50CYP2SBSTD, BIOS SE5C620.86B.01.01.0005.2202160810 02/16/2022
[1026677.269367] Workqueue: ice ice_service_task [ice]
[1026677.274592] RIP: 0010:ice_vsi_rebuild_set_coalesce+0x130/0x1e0 [ice]
[1026677.281421] Code: 0f 84 3a ff ff ff 41 0f b7 74 ec 02 66 89 b0 22 02 00 00 81 e6 ff 1f 00 00 e8 ec fd ff ff e9 35 ff ff ff 48 8b 43 30 49 63 ed <41> 0f b7 34 24 41 83 c5 01 48 8b 3c e8 66 89 b7 aa 02 00 00 81 e6
[1026677.300877] RSP: 0018:ff3be62a6399bcc0 EFLAGS: 00010202
[1026677.306556] RAX: ff28691e28980828 RBX: ff28691e41099828 RCX: 0000000000188000
[1026677.314148] RDX: 0000000000000000 RSI: 0000000000000010 RDI: ff28691e41099828
[1026677.321730] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
[1026677.329311] R10: 0000000000000007 R11: ffffffffffffffc0 R12: 0000000000000010
[1026677.336896] R13: 0000000000000000 R14: 0000000000000000 R15: ff28691e0eaa81a0
[1026677.344472] FS: 0000000000000000(0000) GS:ff28693cbffc0000(0000) knlGS:0000000000000000
[1026677.353000] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1026677.359195] CR2: 0000000000000010 CR3: 0000000128df4001 CR4: 0000000000771ef0
[1026677.366779] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1026677.374369] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1026677.381952] PKRU: 55555554
[1026677.385116] Call Trace:
[1026677.388023] <TASK>
[1026677.390589] ? __die+0x20/0x70
[1026677.394105] ? page_fault_oops+0x82/0x160
[1026677.398576] ? do_user_addr_fault+0x65/0x6a0
[1026677.403307] ? exc_page_fault+0x6a/0x150
[1026677.407694] ? asm_exc_page_fault+0x22/0x30
[1026677.412349] ? ice_vsi_rebuild_set_coalesce+0x130/0x1e0 [ice]
[1026677.4186
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mm: use aligned address in clear_gigantic_page()
In current kernel, hugetlb_no_page() calls folio_zero_user() with the
fault address. Where the fault address may be not aligned with the huge
page size. Then, folio_zero_user() may call clear_gigantic_page() with
the address, while clear_gigantic_page() requires the address to be huge
page size aligned. So, this may cause memory corruption or information
leak, addtional, use more obvious naming 'addr_hint' instead of 'addr' for
clear_gigantic_page(). |
| A command injection vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained user access to execute arbitrary commands.
We have already fixed the vulnerability in the following versions:
QTS 5.2.4.3079 build 20250321 and later
QuTS hero h5.2.4.3079 build 20250321 and later |
| An out-of-bounds write vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained administrator access to modify or corrupt memory.
We have already fixed the vulnerability in the following versions:
QTS 5.2.3.3006 build 20250108 and later
QuTS hero h5.2.3.3006 build 20250108 and later |
| An out-of-bounds write vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained administrator access to modify or corrupt memory.
We have already fixed the vulnerability in the following versions:
QTS 5.2.3.3006 build 20250108 and later
QuTS hero h5.2.3.3006 build 20250108 and later |
| An out-of-bounds write vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained administrator access to modify or corrupt memory.
QTS 5.2.x/QuTS hero h5.2.x are not affected.
We have already fixed the vulnerability in the following versions:
QTS 5.1.9.2954 build 20241120 and later
QuTS hero h5.1.9.2954 build 20241120 and later |
| A command injection vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers to execute arbitrary commands.
We have already fixed the vulnerability in the following versions:
QTS 5.1.9.2954 build 20241120 and later
QTS 5.2.2.2950 build 20241114 and later
QuTS hero h5.1.9.2954 build 20241120 and later
QuTS hero h5.2.2.2952 build 20241116 and later |
| A weakness has been identified in Ruijie 6000-E10 up to 2.4.3.6-20171117. This affects an unknown part of the file /view/vpn/autovpn/sub_commit.php. This manipulation of the argument key causes os command injection. It is possible to initiate the attack remotely. The exploit has been made available to the public and could be exploited. The vendor was contacted early about this disclosure but did not respond in any way. |