| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Spam protection, Anti-Spam, FireWall by CleanTalk plugin for WordPress is vulnerable to unauthorized Arbitrary Plugin Installation due to an authorization bypass via reverse DNS (PTR record) spoofing on the 'checkWithoutToken' function in all versions up to, and including, 6.71. This makes it possible for unauthenticated attackers to install and activate arbitrary plugins which can be leveraged to achieve remote code execution if another vulnerable plugin is installed and activated. Note: This is only exploitable on sites with an invalid API key. |
| The EventPrime plugin for WordPress is vulnerable to unauthorized image file upload in all versions up to, and including, 4.2.8.4. This is due to the plugin registering the upload_file_media AJAX action as publicly accessible (nopriv-enabled) without implementing any authentication, authorization, or nonce verification despite a nonce being created. This makes it possible for unauthenticated attackers to upload image files to the WordPress uploads directory and create Media Library attachments via the ep_upload_file_media endpoint. |
| The Forminator Forms – Contact Form, Payment Form & Custom Form Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the form_name parameter in all versions up to, and including, 1.50.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level access, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. The plugin allows admins to give form management permissions to lower level users, which could make this exploitable by users such as subscribers. |
| SQL injection vulnerability (SQLi) in Clicldeu SaaS, specifically in the generation of reports, which occurs when a previously authenticated remote attacker executes a malicious payload in the URL generated after downloading the student's report card in the ‘Day-to-day’ section from the mobile application.
In the URL of the generated PDF, the session token used does not expire, so it remains valid for days after its generation, and unusual characters can be entered after the ‘id_alu’ parameter, resulting in two types of SQLi: boolean-based blind and time-based blind. Exploiting this vulnerability could allow an attacker to access confidential information in the database. |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/481
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 481 Comm: rpcbind Not tainted 6.19.0-rc7-next-20260130-yocto-standard+ #35 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0x98
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x54
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver.
Please note: To reproduce this issue, I manually reverted the changes to
am335x-bone-common.dtsi from commit c477358e66a3 ("ARM: dts: am335x-bone:
switch to new cpsw switch drv") in order to revert to the legacy cpsw
driver. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: sync read disk super and set block size
When the user performs a btrfs mount, the block device is not set
correctly. The user sets the block size of the block device to 0x4000
by executing the BLKBSZSET command.
Since the block size change also changes the mapping->flags value, this
further affects the result of the mapping_min_folio_order() calculation.
Let's analyze the following two scenarios:
Scenario 1: Without executing the BLKBSZSET command, the block size is
0x1000, and mapping_min_folio_order() returns 0;
Scenario 2: After executing the BLKBSZSET command, the block size is
0x4000, and mapping_min_folio_order() returns 2.
do_read_cache_folio() allocates a folio before the BLKBSZSET command
is executed. This results in the allocated folio having an order value
of 0. Later, after BLKBSZSET is executed, the block size increases to
0x4000, and the mapping_min_folio_order() calculation result becomes 2.
This leads to two undesirable consequences:
1. filemap_add_folio() triggers a VM_BUG_ON_FOLIO(folio_order(folio) <
mapping_min_folio_order(mapping)) assertion.
2. The syzbot report [1] shows a null pointer dereference in
create_empty_buffers() due to a buffer head allocation failure.
Synchronization should be established based on the inode between the
BLKBSZSET command and read cache page to prevent inconsistencies in
block size or mapping flags before and after folio allocation.
[1]
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:create_empty_buffers+0x4d/0x480 fs/buffer.c:1694
Call Trace:
folio_create_buffers+0x109/0x150 fs/buffer.c:1802
block_read_full_folio+0x14c/0x850 fs/buffer.c:2403
filemap_read_folio+0xc8/0x2a0 mm/filemap.c:2496
do_read_cache_folio+0x266/0x5c0 mm/filemap.c:4096
do_read_cache_page mm/filemap.c:4162 [inline]
read_cache_page_gfp+0x29/0x120 mm/filemap.c:4195
btrfs_read_disk_super+0x192/0x500 fs/btrfs/volumes.c:1367 |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: fix NULL pointer dereference when setting max
An issue was triggered:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 15 UID: 0 PID: 658 Comm: bash Tainted: 6.19.0-rc6-next-2026012
Tainted: [O]=OOT_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
RIP: 0010:strcmp+0x10/0x30
RSP: 0018:ffffc900017f7dc0 EFLAGS: 00000246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff888107cd4358
RDX: 0000000019f73907 RSI: ffffffff82cc381a RDI: 0000000000000000
RBP: ffff8881016bef0d R08: 000000006c0e7145 R09: 0000000056c0e714
R10: 0000000000000001 R11: ffff888107cd4358 R12: 0007ffffffffffff
R13: ffff888101399200 R14: ffff888100fcb360 R15: 0007ffffffffffff
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000105c79000 CR4: 00000000000006f0
Call Trace:
<TASK>
dmemcg_limit_write.constprop.0+0x16d/0x390
? __pfx_set_resource_max+0x10/0x10
kernfs_fop_write_iter+0x14e/0x200
vfs_write+0x367/0x510
ksys_write+0x66/0xe0
do_syscall_64+0x6b/0x390
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f42697e1887
It was trriggered setting max without limitation, the command is like:
"echo test/region0 > dmem.max". To fix this issue, add check whether
options is valid after parsing the region_name. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: r8152: fix resume reset deadlock
rtl8152 can trigger device reset during reset which
potentially can result in a deadlock:
**** DPM device timeout after 10 seconds; 15 seconds until panic ****
Call Trace:
<TASK>
schedule+0x483/0x1370
schedule_preempt_disabled+0x15/0x30
__mutex_lock_common+0x1fd/0x470
__rtl8152_set_mac_address+0x80/0x1f0
dev_set_mac_address+0x7f/0x150
rtl8152_post_reset+0x72/0x150
usb_reset_device+0x1d0/0x220
rtl8152_resume+0x99/0xc0
usb_resume_interface+0x3e/0xc0
usb_resume_both+0x104/0x150
usb_resume+0x22/0x110
The problem is that rtl8152 resume calls reset under
tp->control mutex while reset basically re-enters rtl8152
and attempts to acquire the same tp->control lock once
again.
Reset INACCESSIBLE device outside of tp->control mutex
scope to avoid recursive mutex_lock() deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: aloop: Fix racy access at PCM trigger
The PCM trigger callback of aloop driver tries to check the PCM state
and stop the stream of the tied substream in the corresponding cable.
Since both check and stop operations are performed outside the cable
lock, this may result in UAF when a program attempts to trigger
frequently while opening/closing the tied stream, as spotted by
fuzzers.
For addressing the UAF, this patch changes two things:
- It covers the most of code in loopback_check_format() with
cable->lock spinlock, and add the proper NULL checks. This avoids
already some racy accesses.
- In addition, now we try to check the state of the capture PCM stream
that may be stopped in this function, which was the major pain point
leading to UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: avoid pool UAF
An UAF issue was observed:
BUG: KASAN: slab-use-after-free in page_counter_uncharge+0x65/0x150
Write of size 8 at addr ffff888106715440 by task insmod/527
CPU: 4 UID: 0 PID: 527 Comm: insmod 6.19.0-rc7-next-20260129+ #11
Tainted: [O]=OOT_MODULE
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
kasan_report+0xca/0x100
kasan_check_range+0x39/0x1c0
page_counter_uncharge+0x65/0x150
dmem_cgroup_uncharge+0x1f/0x260
Allocated by task 527:
Freed by task 0:
The buggy address belongs to the object at ffff888106715400
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 64 bytes inside of
freed 512-byte region [ffff888106715400, ffff888106715600)
The buggy address belongs to the physical page:
Memory state around the buggy address:
ffff888106715300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888106715380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888106715400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888106715480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888106715500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
The issue occurs because a pool can still be held by a caller after its
associated memory region is unregistered. The current implementation frees
the pool even if users still hold references to it (e.g., before uncharge
operations complete).
This patch adds a reference counter to each pool, ensuring that a pool is
only freed when its reference count drops to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw_new: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/496
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 496 Comm: rpcbind Not tainted 6.19.0-rc6-next-20260122-yocto-standard+ #8 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0xd8
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x5
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer check in IRQ handler
Now that all other accesses to curr_xfer are done under the lock,
protect the curr_xfer NULL check in tegra_qspi_isr_thread() with the
spinlock. Without this protection, the following race can occur:
CPU0 (ISR thread) CPU1 (timeout path)
---------------- -------------------
if (!tqspi->curr_xfer)
// sees non-NULL
spin_lock()
tqspi->curr_xfer = NULL
spin_unlock()
handle_*_xfer()
spin_lock()
t = tqspi->curr_xfer // NULL!
... t->len ... // NULL dereference!
With this patch, all curr_xfer accesses are now properly synchronized.
Although all accesses to curr_xfer are done under the lock, in
tegra_qspi_isr_thread() it checks for NULL, releases the lock and
reacquires it later in handle_cpu_based_xfer()/handle_dma_based_xfer().
There is a potential for an update in between, which could cause a NULL
pointer dereference.
To handle this, add a NULL check inside the handlers after acquiring
the lock. This ensures that if the timeout path has already cleared
curr_xfer, the handler will safely return without dereferencing the
NULL pointer. |
| A vulnerability was identified in Unidocs ezPDF DRM Reader and ezPDF Reader 2.0/3.0.0.4 on 32-bit. This affects an unknown part in the library SHFOLDER.dll. Such manipulation leads to uncontrolled search path. The attack needs to be performed locally. Attacks of this nature are highly complex. It is indicated that the exploitability is difficult. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| The Ecwid by Lightspeed Ecommerce Shopping Cart plugin for WordPress is vulnerable to Privilege Escalation in all versions up to, and including, 7.0.7. This is due to a missing capability check in the 'save_custom_user_profile_fields' function. This makes it possible for authenticated attackers, with minimal permissions such as a subscriber, to supply the 'ec_store_admin_access' parameter during a profile update and gain store manager access to the site. |
| There is a misconfiguration vulnerability inside the Infotainment ECU manufactured by BOSCH. The vulnerability happens during the startup phase of a specific systemd service, and as a result, the following developer features will be activated: the disabled firewall and the launched SSH server.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The specific flaw exists within the Bluetooth stack developed by Alps Alpine of the Infotainment ECU manufactured by Bosch. The issue results from the lack of proper boundary validation of user-supplied data, which can result in a stack-based buffer overflow when receiving a specific packet on the established upper layer L2CAP channel. An attacker can leverage this vulnerability to obtain remote code execution on the Infotainment ECU with root privileges.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The specific flaw exists within the Bluetooth stack developed by Alps Alpine of the Infotainment ECU manufactured by Bosch. The issue results from the lack of proper boundary validation of user-supplied data, which can result in a stack-based buffer overflow when receiving a specific packet on the established upper layer L2CAP channel. An attacker can leverage this vulnerability to obtain remote code execution on the Infotainment ECU with root privileges.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The specific flaw exists within the Bluetooth stack developed by Alps Alpine of the Infotainment ECU manufactured by Bosch. The issue results from the lack of proper boundary validation of user-supplied data, which can result in a stack-based buffer overflow when receiving a specific packet on the established upper layer L2CAP channel. An attacker can leverage this vulnerability to obtain remote code execution on the Infotainment ECU with root privileges.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The Infotainment ECU manufactured by Bosch uses a RH850 module for CAN communication. RH850 is connected to infotainment over the INC interface through a custom protocol. There is a vulnerability during processing requests of this protocol on the V850 side which allows an attacker with code execution on the infotainment main SoC to perform code execution on the RH850 module and subsequently send arbitrary CAN messages over the connected CAN bus.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The Micca KE700 system relies on a 6-bit portion of an identifier for authentication within rolling codes, providing only 64 possible combinations. This low entropy allows an attacker to perform a brute-force attack against one component of the rolling code. Successful exploitation simplify an attacker to predict the next valid rolling code, granting unauthorized access to the vehicle. |