Search Results (40869 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40843 1 Ericsson 1 Codechecker 2025-11-14 5.9 Medium
CodeChecker is an analyzer tooling, defect database and viewer extension for the Clang Static Analyzer and Clang Tidy. CodeChecker versions up to 6.26.1 contain a buffer overflow vulnerability in the internal ldlogger library, which is executed by the CodeChecker log command. This issue affects CodeChecker: through 6.26.1.
CVE-2022-49985 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Don't use tnum_range on array range checking for poke descriptors Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which is based on a customized syzkaller: BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0 Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489 CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x9c/0xc9 print_address_description.constprop.0+0x1f/0x1f0 ? bpf_int_jit_compile+0x1257/0x13f0 kasan_report.cold+0xeb/0x197 ? kvmalloc_node+0x170/0x200 ? bpf_int_jit_compile+0x1257/0x13f0 bpf_int_jit_compile+0x1257/0x13f0 ? arch_prepare_bpf_dispatcher+0xd0/0xd0 ? rcu_read_lock_sched_held+0x43/0x70 bpf_prog_select_runtime+0x3e8/0x640 ? bpf_obj_name_cpy+0x149/0x1b0 bpf_prog_load+0x102f/0x2220 ? __bpf_prog_put.constprop.0+0x220/0x220 ? find_held_lock+0x2c/0x110 ? __might_fault+0xd6/0x180 ? lock_downgrade+0x6e0/0x6e0 ? lock_is_held_type+0xa6/0x120 ? __might_fault+0x147/0x180 __sys_bpf+0x137b/0x6070 ? bpf_perf_link_attach+0x530/0x530 ? new_sync_read+0x600/0x600 ? __fget_files+0x255/0x450 ? lock_downgrade+0x6e0/0x6e0 ? fput+0x30/0x1a0 ? ksys_write+0x1a8/0x260 __x64_sys_bpf+0x7a/0xc0 ? syscall_enter_from_user_mode+0x21/0x70 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f917c4e2c2d The problem here is that a range of tnum_range(0, map->max_entries - 1) has limited ability to represent the concrete tight range with the tnum as the set of resulting states from value + mask can result in a superset of the actual intended range, and as such a tnum_in(range, reg->var_off) check may yield true when it shouldn't, for example tnum_range(0, 2) would result in 00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here represented by a less precise superset of {0, 1, 2, 3}. As the register is known const scalar, really just use the concrete reg->var_off.value for the upper index check.
CVE-2025-30512 1 Growatt 1 Cloud Portal 2025-11-14 6.5 Medium
Unauthenticated attackers can send configuration settings to device and possible perform physical actions remotely (e.g., on/off).
CVE-2022-49961 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Do mark_chain_precision for ARG_CONST_ALLOC_SIZE_OR_ZERO Precision markers need to be propagated whenever we have an ARG_CONST_* style argument, as the verifier cannot consider imprecise scalars to be equivalent for the purposes of states_equal check when such arguments refine the return value (in this case, set mem_size for PTR_TO_MEM). The resultant mem_size for the R0 is derived from the constant value, and if the verifier incorrectly prunes states considering them equivalent where such arguments exist (by seeing that both registers have reg->precise as false in regsafe), we can end up with invalid programs passing the verifier which can do access beyond what should have been the correct mem_size in that explored state. To show a concrete example of the problem: 0000000000000000 <prog>: 0: r2 = *(u32 *)(r1 + 80) 1: r1 = *(u32 *)(r1 + 76) 2: r3 = r1 3: r3 += 4 4: if r3 > r2 goto +18 <LBB5_5> 5: w2 = 0 6: *(u32 *)(r1 + 0) = r2 7: r1 = *(u32 *)(r1 + 0) 8: r2 = 1 9: if w1 == 0 goto +1 <LBB5_3> 10: r2 = -1 0000000000000058 <LBB5_3>: 11: r1 = 0 ll 13: r3 = 0 14: call bpf_ringbuf_reserve 15: if r0 == 0 goto +7 <LBB5_5> 16: r1 = r0 17: r1 += 16777215 18: w2 = 0 19: *(u8 *)(r1 + 0) = r2 20: r1 = r0 21: r2 = 0 22: call bpf_ringbuf_submit 00000000000000b8 <LBB5_5>: 23: w0 = 0 24: exit For the first case, the single line execution's exploration will prune the search at insn 14 for the branch insn 9's second leg as it will be verified first using r2 = -1 (UINT_MAX), while as w1 at insn 9 will always be 0 so at runtime we don't get error for being greater than UINT_MAX/4 from bpf_ringbuf_reserve. The verifier during regsafe just sees reg->precise as false for both r2 registers in both states, hence considers them equal for purposes of states_equal. If we propagated precise markers using the backtracking support, we would use the precise marking to then ensure that old r2 (UINT_MAX) was within the new r2 (1) and this would never be true, so the verification would rightfully fail. The end result is that the out of bounds access at instruction 19 would be permitted without this fix. Note that reg->precise is always set to true when user does not have CAP_BPF (or when subprog count is greater than 1 (i.e. use of any static or global functions)), hence this is only a problem when precision marks need to be explicitly propagated (i.e. privileged users with CAP_BPF). A simplified test case has been included in the next patch to prevent future regressions.
CVE-2025-62689 1 Gnu 1 Libmicrohttpd 2025-11-14 5.3 Medium
NULL pointer dereference vulnerability exists in GNU libmicrohttpd v1.0.2 and earlier. The vulnerability was fixed in commit ff13abc on the master branch of the libmicrohttpd Git repository, after the v1.0.2 tag. A specially crafted packet sent by an attacker could cause a denial-of-service (DoS) condition.
CVE-2025-9524 1 Axis 1 Axis Os 2025-11-14 4.3 Medium
The VAPIX API port.cgi did not have sufficient input validation, which may result in process crashes and impact usability. This vulnerability can only be exploited after authenticating with a viewer- operator- or administrator-privileged service account.
CVE-2024-36913 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-14 8.1 High
In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Leak pages if set_memory_encrypted() fails In CoCo VMs it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. VMBus code could free decrypted pages if set_memory_encrypted()/decrypted() fails. Leak the pages if this happens.
CVE-2025-37973 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: fix out-of-bounds access during multi-link element defragmentation Currently during the multi-link element defragmentation process, the multi-link element length added to the total IEs length when calculating the length of remaining IEs after the multi-link element in cfg80211_defrag_mle(). This could lead to out-of-bounds access if the multi-link element or its corresponding fragment elements are the last elements in the IEs buffer. To address this issue, correctly calculate the remaining IEs length by deducting the multi-link element end offset from total IEs end offset.
CVE-2025-37975 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: riscv: module: Fix out-of-bounds relocation access The current code allows rel[j] to access one element past the end of the relocation section. Simplify to num_relocations which is equivalent to the existing size expression.
CVE-2025-37984 1 Linux 1 Linux Kernel 2025-11-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: ecdsa - Harden against integer overflows in DIV_ROUND_UP() Herbert notes that DIV_ROUND_UP() may overflow unnecessarily if an ecdsa implementation's ->key_size() callback returns an unusually large value. Herbert instead suggests (for a division by 8): X / 8 + !!(X & 7) Based on this formula, introduce a generic DIV_ROUND_UP_POW2() macro and use it in lieu of DIV_ROUND_UP() for ->key_size() return values. Additionally, use the macro in ecc_digits_from_bytes(), whose "nbytes" parameter is a ->key_size() return value in some instances, or a user-specified ASN.1 length in the case of ecdsa_get_signature_rs().
CVE-2025-22039 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix overflow in dacloffset bounds check The dacloffset field was originally typed as int and used in an unchecked addition, which could overflow and bypass the existing bounds check in both smb_check_perm_dacl() and smb_inherit_dacl(). This could result in out-of-bounds memory access and a kernel crash when dereferencing the DACL pointer. This patch converts dacloffset to unsigned int and uses check_add_overflow() to validate access to the DACL.
CVE-2025-7704 1 Supermicro 1 Bmc 2025-11-14 5.4 Medium
Supermicro BMC Insyde SMASH shell program has a stacked-based overflow vulnerability
CVE-2025-64726 1 Socketdev 1 Firewall 2025-11-14 N/A
Socket Firewall is an HTTP/HTTPS proxy server that intercepts package manager requests and enforces security policies by blocking dangerous packages. Socket Firewall binary versions (separate from installers) prior to 0.15.5 are vulnerable to arbitrary code execution when run in untrusted project directories. The vulnerability allows an attacker to execute arbitrary code by placing a malicious `.sfw.config` file in a project directory. When a developer runs Socket Firewall commands (e.g., `sfw npm install`) in that directory, the tool loads the `.sfw.config` file and populates environment variables directly into the Node.js process. An attacker can exploit this by setting `NODE_OPTIONS` with a `--require` directive to execute malicious JavaScript code before Socket Firewall's security controls are initialized, effectively bypassing the tool's malicious package detection. The attack vector is indirect and requires a developer to install dependencies for an untrusted project and execute a command within the context of the untrusted project. The vulnerability has been patched in Socket Firewall version 0.15.5. Users should upgrade to version 0.15.5 or later. The fix isolates configuration file values from subprocess environments. Look at `sfw --version` for version information. If users rely on the recommended installation mechanism (e.g. global installation via `npm install -g sfw`) then no workaround is necessary. This wrapper package automatically ensures that users are running the latest version of Socket Firewall. Users who have manually installed the binary and cannot immediately upgrade should avoid running Socket Firewall in untrusted project directories. Before running Socket Firewall in any new project, inspect `.sfw.config` and `.env.local` files for suspicious `NODE_OPTIONS` or other environment variable definitions that reference local files.
CVE-2025-12818 1 Postgresql 1 Postgresql 2025-11-14 5.9 Medium
Integer wraparound in multiple PostgreSQL libpq client library functions allows an application input provider or network peer to cause libpq to undersize an allocation and write out-of-bounds by hundreds of megabytes. This results in a segmentation fault for the application using libpq. Versions before PostgreSQL 18.1, 17.7, 16.11, 15.15, 14.20, and 13.23 are affected.
CVE-2025-11713 2 Microsoft, Mozilla 4 Windows, Firefox, Firefox Esr and 1 more 2025-11-14 8.1 High
Insufficient escaping in the “Copy as cURL” feature could have been used to trick a user into executing unexpected code on Windows. This did not affect the application when running on other operating systems. This vulnerability affects Firefox < 144, Firefox ESR < 140.4, Thunderbird < 144, and Thunderbird < 140.4.
CVE-2025-35967 2 Intel, Microsoft 4 Proset, Proset/wireless, Proset/wireless Software and 1 more 2025-11-14 7.4 High
Out-of-bounds read for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts.
CVE-2025-61844 1 Adobe 1 Format Plugins 2025-11-14 5.5 Medium
Format Plugins versions 1.1.1 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2025-61841 1 Adobe 1 Format Plugins 2025-11-14 5.5 Medium
Format Plugins versions 1.1.1 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to access sensitive memory information. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2025-61838 1 Adobe 1 Format Plugins 2025-11-14 7.8 High
Format Plugins versions 1.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2025-61837 1 Adobe 1 Format Plugins 2025-11-14 7.8 High
Format Plugins versions 1.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.