Search Results (16780 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54116 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/fbdev-generic: prohibit potential out-of-bounds access The fbdev test of IGT may write after EOF, which lead to out-of-bound access for drm drivers with fbdev-generic. For example, run fbdev test on a x86+ast2400 platform, with 1680x1050 resolution, will cause the linux kernel hang with the following call trace: Oops: 0000 [#1] PREEMPT SMP PTI [IGT] fbdev: starting subtest eof Workqueue: events drm_fb_helper_damage_work [drm_kms_helper] [IGT] fbdev: starting subtest nullptr RIP: 0010:memcpy_erms+0xa/0x20 RSP: 0018:ffffa17d40167d98 EFLAGS: 00010246 RAX: ffffa17d4eb7fa80 RBX: ffffa17d40e0aa80 RCX: 00000000000014c0 RDX: 0000000000001a40 RSI: ffffa17d40e0b000 RDI: ffffa17d4eb80000 RBP: ffffa17d40167e20 R08: 0000000000000000 R09: ffff89522ecff8c0 R10: ffffa17d4e4c5000 R11: 0000000000000000 R12: ffffa17d4eb7fa80 R13: 0000000000001a40 R14: 000000000000041a R15: ffffa17d40167e30 FS: 0000000000000000(0000) GS:ffff895257380000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffa17d40e0b000 CR3: 00000001eaeca006 CR4: 00000000001706e0 Call Trace: <TASK> ? drm_fbdev_generic_helper_fb_dirty+0x207/0x330 [drm_kms_helper] drm_fb_helper_damage_work+0x8f/0x170 [drm_kms_helper] process_one_work+0x21f/0x430 worker_thread+0x4e/0x3c0 ? __pfx_worker_thread+0x10/0x10 kthread+0xf4/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK> CR2: ffffa17d40e0b000 ---[ end trace 0000000000000000 ]--- The is because damage rectangles computed by drm_fb_helper_memory_range_to_clip() function is not guaranteed to be bound in the screen's active display area. Possible reasons are: 1) Buffers are allocated in the granularity of page size, for mmap system call support. The shadow screen buffer consumed by fbdev emulation may also choosed be page size aligned. 2) The DIV_ROUND_UP() used in drm_fb_helper_memory_range_to_clip() will introduce off-by-one error. For example, on a 16KB page size system, in order to store a 1920x1080 XRGB framebuffer, we need allocate 507 pages. Unfortunately, the size 1920*1080*4 can not be divided exactly by 16KB. 1920 * 1080 * 4 = 8294400 bytes 506 * 16 * 1024 = 8290304 bytes 507 * 16 * 1024 = 8306688 bytes line_length = 1920*4 = 7680 bytes 507 * 16 * 1024 / 7680 = 1081.6 off / line_length = 507 * 16 * 1024 / 7680 = 1081 DIV_ROUND_UP(507 * 16 * 1024, 7680) will yeild 1082 memcpy_toio() typically issue the copy line by line, when copy the last line, out-of-bound access will be happen. Because: 1082 * line_length = 1082 * 7680 = 8309760, and 8309760 > 8306688 Note that userspace may still write to the invisiable area if a larger buffer than width x stride is exposed. But it is not a big issue as long as there still have memory resolve the access if not drafting so far. - Also limit the y1 (Daniel) - keep fix patch it to minimal (Daniel) - screen_size is page size aligned because of it need mmap (Thomas) - Adding fixes tag (Thomas)
CVE-2023-54119 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: inotify: Avoid reporting event with invalid wd When inotify_freeing_mark() races with inotify_handle_inode_event() it can happen that inotify_handle_inode_event() sees that i_mark->wd got already reset to -1 and reports this value to userspace which can confuse the inotify listener. Avoid the problem by validating that wd is sensible (and pretend the mark got removed before the event got generated otherwise).
CVE-2023-54122 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add check for cstate As kzalloc may fail and return NULL pointer, it should be better to check cstate in order to avoid the NULL pointer dereference in __drm_atomic_helper_crtc_reset. Patchwork: https://patchwork.freedesktop.org/patch/514163/
CVE-2023-54123 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid10: fix memleak for 'conf->bio_split' In the error path of raid10_run(), 'conf' need be freed, however, 'conf->bio_split' is missed and memory will be leaked. Since there are 3 places to free 'conf', factor out a helper to fix the problem.
CVE-2023-54128 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: drop peer group ids under namespace lock When cleaning up peer group ids in the failure path we need to make sure to hold on to the namespace lock. Otherwise another thread might just turn the mount from a shared into a non-shared mount concurrently.
CVE-2023-54130 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: hfs/hfsplus: avoid WARN_ON() for sanity check, use proper error handling Commit 55d1cbbbb29e ("hfs/hfsplus: use WARN_ON for sanity check") fixed a build warning by turning a comment into a WARN_ON(), but it turns out that syzbot then complains because it can trigger said warning with a corrupted hfs image. The warning actually does warn about a bad situation, but we are much better off just handling it as the error it is. So rather than warn about us doing bad things, stop doing the bad things and return -EIO. While at it, also fix a memory leak that was introduced by an earlier fix for a similar syzbot warning situation, and add a check for one case that historically wasn't handled at all (ie neither comment nor subsequent WARN_ON).
CVE-2023-54133 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: nfp: clean mc addresses in application firmware when closing port When moving devices from one namespace to another, mc addresses are cleaned in software while not removed from application firmware. Thus the mc addresses are remained and will cause resource leak. Now use `__dev_mc_unsync` to clean mc addresses when closing port.
CVE-2022-50726 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix possible use-after-free in async command interface mlx5_cmd_cleanup_async_ctx should return only after all its callback handlers were completed. Before this patch, the below race between mlx5_cmd_cleanup_async_ctx and mlx5_cmd_exec_cb_handler was possible and lead to a use-after-free: 1. mlx5_cmd_cleanup_async_ctx is called while num_inflight is 2 (i.e. elevated by 1, a single inflight callback). 2. mlx5_cmd_cleanup_async_ctx decreases num_inflight to 1. 3. mlx5_cmd_exec_cb_handler is called, decreases num_inflight to 0 and is about to call wake_up(). 4. mlx5_cmd_cleanup_async_ctx calls wait_event, which returns immediately as the condition (num_inflight == 0) holds. 5. mlx5_cmd_cleanup_async_ctx returns. 6. The caller of mlx5_cmd_cleanup_async_ctx frees the mlx5_async_ctx object. 7. mlx5_cmd_exec_cb_handler goes on and calls wake_up() on the freed object. Fix it by syncing using a completion object. Mark it completed when num_inflight reaches 0. Trace: BUG: KASAN: use-after-free in do_raw_spin_lock+0x23d/0x270 Read of size 4 at addr ffff888139cd12f4 by task swapper/5/0 CPU: 5 PID: 0 Comm: swapper/5 Not tainted 6.0.0-rc3_for_upstream_debug_2022_08_30_13_10 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x57/0x7d print_report.cold+0x2d5/0x684 ? do_raw_spin_lock+0x23d/0x270 kasan_report+0xb1/0x1a0 ? do_raw_spin_lock+0x23d/0x270 do_raw_spin_lock+0x23d/0x270 ? rwlock_bug.part.0+0x90/0x90 ? __delete_object+0xb8/0x100 ? lock_downgrade+0x6e0/0x6e0 _raw_spin_lock_irqsave+0x43/0x60 ? __wake_up_common_lock+0xb9/0x140 __wake_up_common_lock+0xb9/0x140 ? __wake_up_common+0x650/0x650 ? destroy_tis_callback+0x53/0x70 [mlx5_core] ? kasan_set_track+0x21/0x30 ? destroy_tis_callback+0x53/0x70 [mlx5_core] ? kfree+0x1ba/0x520 ? do_raw_spin_unlock+0x54/0x220 mlx5_cmd_exec_cb_handler+0x136/0x1a0 [mlx5_core] ? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core] ? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core] mlx5_cmd_comp_handler+0x65a/0x12b0 [mlx5_core] ? dump_command+0xcc0/0xcc0 [mlx5_core] ? lockdep_hardirqs_on_prepare+0x400/0x400 ? cmd_comp_notifier+0x7e/0xb0 [mlx5_core] cmd_comp_notifier+0x7e/0xb0 [mlx5_core] atomic_notifier_call_chain+0xd7/0x1d0 mlx5_eq_async_int+0x3ce/0xa20 [mlx5_core] atomic_notifier_call_chain+0xd7/0x1d0 ? irq_release+0x140/0x140 [mlx5_core] irq_int_handler+0x19/0x30 [mlx5_core] __handle_irq_event_percpu+0x1f2/0x620 handle_irq_event+0xb2/0x1d0 handle_edge_irq+0x21e/0xb00 __common_interrupt+0x79/0x1a0 common_interrupt+0x78/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40 RIP: 0010:default_idle+0x42/0x60 Code: c1 83 e0 07 48 c1 e9 03 83 c0 03 0f b6 14 11 38 d0 7c 04 84 d2 75 14 8b 05 eb 47 22 02 85 c0 7e 07 0f 00 2d e0 9f 48 00 fb f4 <c3> 48 c7 c7 80 08 7f 85 e8 d1 d3 3e fe eb de 66 66 2e 0f 1f 84 00 RSP: 0018:ffff888100dbfdf0 EFLAGS: 00000242 RAX: 0000000000000001 RBX: ffffffff84ecbd48 RCX: 1ffffffff0afe110 RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffff835cc9bc RBP: 0000000000000005 R08: 0000000000000001 R09: ffff88881dec4ac3 R10: ffffed1103bd8958 R11: 0000017d0ca571c9 R12: 0000000000000005 R13: ffffffff84f024e0 R14: 0000000000000000 R15: dffffc0000000000 ? default_idle_call+0xcc/0x450 default_idle_call+0xec/0x450 do_idle+0x394/0x450 ? arch_cpu_idle_exit+0x40/0x40 ? do_idle+0x17/0x450 cpu_startup_entry+0x19/0x20 start_secondary+0x221/0x2b0 ? set_cpu_sibling_map+0x2070/0x2070 secondary_startup_64_no_verify+0xcd/0xdb </TASK> Allocated by task 49502: kasan_save_stack+0x1e/0x40 __kasan_kmalloc+0x81/0xa0 kvmalloc_node+0x48/0xe0 mlx5e_bulk_async_init+0x35/0x110 [mlx5_core] mlx5e_tls_priv_tx_list_cleanup+0x84/0x3e0 [mlx5_core] mlx5e_ktls_cleanup_tx+0x38f/0x760 [mlx5_core] mlx5e_cleanup_nic_tx+0xa7/0x100 [mlx5_core] mlx5e_detach_netdev+0x1c ---truncated---
CVE-2023-54067 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race when deleting free space root from the dirty cow roots list When deleting the free space tree we are deleting the free space root from the list fs_info->dirty_cowonly_roots without taking the lock that protects it, which is struct btrfs_fs_info::trans_lock. This unsynchronized list manipulation may cause chaos if there's another concurrent manipulation of this list, such as when adding a root to it with ctree.c:add_root_to_dirty_list(). This can result in all sorts of weird failures caused by a race, such as the following crash: [337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI [337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.279928] Code: 85 38 06 00 (...) [337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206 [337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000 [337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070 [337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b [337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600 [337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48 [337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000 [337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0 [337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [337571.282874] Call Trace: [337571.283101] <TASK> [337571.283327] ? __die_body+0x1b/0x60 [337571.283570] ? die_addr+0x39/0x60 [337571.283796] ? exc_general_protection+0x22e/0x430 [337571.284022] ? asm_exc_general_protection+0x22/0x30 [337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs] [337571.284803] ? _raw_spin_unlock+0x15/0x30 [337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs] [337571.285305] reset_balance_state+0x152/0x1b0 [btrfs] [337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs] [337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410 [337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs] [337571.286358] ? mod_objcg_state+0xd2/0x360 [337571.286577] ? refill_obj_stock+0xb0/0x160 [337571.286798] ? seq_release+0x25/0x30 [337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0 [337571.287235] ? percpu_counter_add_batch+0x2e/0xa0 [337571.287455] ? __x64_sys_ioctl+0x88/0xc0 [337571.287675] __x64_sys_ioctl+0x88/0xc0 [337571.287901] do_syscall_64+0x38/0x90 [337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc [337571.288352] RIP: 0033:0x7f478aaffe9b So fix this by locking struct btrfs_fs_info::trans_lock before deleting the free space root from that list.
CVE-2023-54070 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: igb: clean up in all error paths when enabling SR-IOV After commit 50f303496d92 ("igb: Enable SR-IOV after reinit"), removing the igb module could hang or crash (depending on the machine) when the module has been loaded with the max_vfs parameter set to some value != 0. In case of one test machine with a dual port 82580, this hang occurred: [ 232.480687] igb 0000:41:00.1: removed PHC on enp65s0f1 [ 233.093257] igb 0000:41:00.1: IOV Disabled [ 233.329969] pcieport 0000:40:01.0: AER: Multiple Uncorrected (Non-Fatal) err0 [ 233.340302] igb 0000:41:00.0: PCIe Bus Error: severity=Uncorrected (Non-Fata) [ 233.352248] igb 0000:41:00.0: device [8086:1516] error status/mask=00100000 [ 233.361088] igb 0000:41:00.0: [20] UnsupReq (First) [ 233.368183] igb 0000:41:00.0: AER: TLP Header: 40000001 0000040f cdbfc00c c [ 233.376846] igb 0000:41:00.1: PCIe Bus Error: severity=Uncorrected (Non-Fata) [ 233.388779] igb 0000:41:00.1: device [8086:1516] error status/mask=00100000 [ 233.397629] igb 0000:41:00.1: [20] UnsupReq (First) [ 233.404736] igb 0000:41:00.1: AER: TLP Header: 40000001 0000040f cdbfc00c c [ 233.538214] pci 0000:41:00.1: AER: can't recover (no error_detected callback) [ 233.538401] igb 0000:41:00.0: removed PHC on enp65s0f0 [ 233.546197] pcieport 0000:40:01.0: AER: device recovery failed [ 234.157244] igb 0000:41:00.0: IOV Disabled [ 371.619705] INFO: task irq/35-aerdrv:257 blocked for more than 122 seconds. [ 371.627489] Not tainted 6.4.0-dirty #2 [ 371.632257] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this. [ 371.641000] task:irq/35-aerdrv state:D stack:0 pid:257 ppid:2 f0 [ 371.650330] Call Trace: [ 371.653061] <TASK> [ 371.655407] __schedule+0x20e/0x660 [ 371.659313] schedule+0x5a/0xd0 [ 371.662824] schedule_preempt_disabled+0x11/0x20 [ 371.667983] __mutex_lock.constprop.0+0x372/0x6c0 [ 371.673237] ? __pfx_aer_root_reset+0x10/0x10 [ 371.678105] report_error_detected+0x25/0x1c0 [ 371.682974] ? __pfx_report_normal_detected+0x10/0x10 [ 371.688618] pci_walk_bus+0x72/0x90 [ 371.692519] pcie_do_recovery+0xb2/0x330 [ 371.696899] aer_process_err_devices+0x117/0x170 [ 371.702055] aer_isr+0x1c0/0x1e0 [ 371.705661] ? __set_cpus_allowed_ptr+0x54/0xa0 [ 371.710723] ? __pfx_irq_thread_fn+0x10/0x10 [ 371.715496] irq_thread_fn+0x20/0x60 [ 371.719491] irq_thread+0xe6/0x1b0 [ 371.723291] ? __pfx_irq_thread_dtor+0x10/0x10 [ 371.728255] ? __pfx_irq_thread+0x10/0x10 [ 371.732731] kthread+0xe2/0x110 [ 371.736243] ? __pfx_kthread+0x10/0x10 [ 371.740430] ret_from_fork+0x2c/0x50 [ 371.744428] </TASK> The reproducer was a simple script: #!/bin/sh for i in `seq 1 5`; do modprobe -rv igb modprobe -v igb max_vfs=1 sleep 1 modprobe -rv igb done It turned out that this could only be reproduce on 82580 (quad and dual-port), but not on 82576, i350 and i210. Further debugging showed that igb_enable_sriov()'s call to pci_enable_sriov() is failing, because dev->is_physfn is 0 on 82580. Prior to commit 50f303496d92 ("igb: Enable SR-IOV after reinit"), igb_enable_sriov() jumped into the "err_out" cleanup branch. After this commit it only returned the error code. So the cleanup didn't take place, and the incorrect VF setup in the igb_adapter structure fooled the igb driver into assuming that VFs have been set up where no VF actually existed. Fix this problem by cleaning up again if pci_enable_sriov() fails.
CVE-2023-54098 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gvt: fix gvt debugfs destroy When gvt debug fs is destroyed, need to have a sane check if drm minor's debugfs root is still available or not, otherwise in case like device remove through unbinding, drm minor's debugfs directory has already been removed, then intel_gvt_debugfs_clean() would act upon dangling pointer like below oops. i915 0000:00:02.0: Direct firmware load for i915/gvt/vid_0x8086_did_0x1926_rid_0x0a.golden_hw_state failed with error -2 i915 0000:00:02.0: MDEV: Registered Console: switching to colour dummy device 80x25 i915 0000:00:02.0: MDEV: Unregistering BUG: kernel NULL pointer dereference, address: 00000000000000a0 PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP PTI CPU: 2 PID: 2486 Comm: gfx-unbind.sh Tainted: G I 6.1.0-rc8+ #15 Hardware name: Dell Inc. XPS 13 9350/0JXC1H, BIOS 1.13.0 02/10/2020 RIP: 0010:down_write+0x1f/0x90 Code: 1d ff ff 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 53 48 89 fb e8 62 c0 ff ff bf 01 00 00 00 e8 28 5e 31 ff 31 c0 ba 01 00 00 00 <f0> 48 0f b1 13 75 33 65 48 8b 04 25 c0 bd 01 00 48 89 43 08 bf 01 RSP: 0018:ffff9eb3036ffcc8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 00000000000000a0 RCX: ffffff8100000000 RDX: 0000000000000001 RSI: 0000000000000064 RDI: ffffffffa48787a8 RBP: ffff9eb3036ffd30 R08: ffffeb1fc45a0608 R09: ffffeb1fc45a05c0 R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000 R13: ffff91acc33fa328 R14: ffff91acc033f080 R15: ffff91acced533e0 FS: 00007f6947bba740(0000) GS:ffff91ae36d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000a0 CR3: 00000001133a2002 CR4: 00000000003706e0 Call Trace: <TASK> simple_recursive_removal+0x9f/0x2a0 ? start_creating.part.0+0x120/0x120 ? _raw_spin_lock+0x13/0x40 debugfs_remove+0x40/0x60 intel_gvt_debugfs_clean+0x15/0x30 [kvmgt] intel_gvt_clean_device+0x49/0xe0 [kvmgt] intel_gvt_driver_remove+0x2f/0xb0 i915_driver_remove+0xa4/0xf0 i915_pci_remove+0x1a/0x30 pci_device_remove+0x33/0xa0 device_release_driver_internal+0x1b2/0x230 unbind_store+0xe0/0x110 kernfs_fop_write_iter+0x11b/0x1f0 vfs_write+0x203/0x3d0 ksys_write+0x63/0xe0 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6947cb5190 Code: 40 00 48 8b 15 71 9c 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d 51 24 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89 RSP: 002b:00007ffcbac45a28 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f6947cb5190 RDX: 000000000000000d RSI: 0000555e35c866a0 RDI: 0000000000000001 RBP: 0000555e35c866a0 R08: 0000000000000002 R09: 0000555e358cb97c R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000001 R13: 000000000000000d R14: 0000000000000000 R15: 0000555e358cb8e0 </TASK> Modules linked in: kvmgt CR2: 00000000000000a0 ---[ end trace 0000000000000000 ]---
CVE-2025-68360 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: wed: use proper wed reference in mt76 wed driver callabacks MT7996 driver can use both wed and wed_hif2 devices to offload traffic from/to the wireless NIC. In the current codebase we assume to always use the primary wed device in wed callbacks resulting in the following crash if the hw runs wed_hif2 (e.g. 6GHz link). [ 297.455876] Unable to handle kernel read from unreadable memory at virtual address 000000000000080a [ 297.464928] Mem abort info: [ 297.467722] ESR = 0x0000000096000005 [ 297.471461] EC = 0x25: DABT (current EL), IL = 32 bits [ 297.476766] SET = 0, FnV = 0 [ 297.479809] EA = 0, S1PTW = 0 [ 297.482940] FSC = 0x05: level 1 translation fault [ 297.487809] Data abort info: [ 297.490679] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 297.496156] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 297.501196] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 297.506500] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000107480000 [ 297.512927] [000000000000080a] pgd=08000001097fb003, p4d=08000001097fb003, pud=08000001097fb003, pmd=0000000000000000 [ 297.523532] Internal error: Oops: 0000000096000005 [#1] SMP [ 297.715393] CPU: 2 UID: 0 PID: 45 Comm: kworker/u16:2 Tainted: G O 6.12.50 #0 [ 297.723908] Tainted: [O]=OOT_MODULE [ 297.727384] Hardware name: Banana Pi BPI-R4 (2x SFP+) (DT) [ 297.732857] Workqueue: nf_ft_offload_del nf_flow_rule_route_ipv6 [nf_flow_table] [ 297.740254] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 297.747205] pc : mt76_wed_offload_disable+0x64/0xa0 [mt76] [ 297.752688] lr : mtk_wed_flow_remove+0x58/0x80 [ 297.757126] sp : ffffffc080fe3ae0 [ 297.760430] x29: ffffffc080fe3ae0 x28: ffffffc080fe3be0 x27: 00000000deadbef7 [ 297.767557] x26: ffffff80c5ebca00 x25: 0000000000000001 x24: ffffff80c85f4c00 [ 297.774683] x23: ffffff80c1875b78 x22: ffffffc080d42cd0 x21: ffffffc080660018 [ 297.781809] x20: ffffff80c6a076d0 x19: ffffff80c6a043c8 x18: 0000000000000000 [ 297.788935] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000000 [ 297.796060] x14: 0000000000000019 x13: ffffff80c0ad8ec0 x12: 00000000fa83b2da [ 297.803185] x11: ffffff80c02700c0 x10: ffffff80c0ad8ec0 x9 : ffffff81fef96200 [ 297.810311] x8 : ffffff80c02700c0 x7 : ffffff80c02700d0 x6 : 0000000000000002 [ 297.817435] x5 : 0000000000000400 x4 : 0000000000000000 x3 : 0000000000000000 [ 297.824561] x2 : 0000000000000001 x1 : 0000000000000800 x0 : ffffff80c6a063c8 [ 297.831686] Call trace: [ 297.834123] mt76_wed_offload_disable+0x64/0xa0 [mt76] [ 297.839254] mtk_wed_flow_remove+0x58/0x80 [ 297.843342] mtk_flow_offload_cmd+0x434/0x574 [ 297.847689] mtk_wed_setup_tc_block_cb+0x30/0x40 [ 297.852295] nf_flow_offload_ipv6_hook+0x7f4/0x964 [nf_flow_table] [ 297.858466] nf_flow_rule_route_ipv6+0x438/0x4a4 [nf_flow_table] [ 297.864463] process_one_work+0x174/0x300 [ 297.868465] worker_thread+0x278/0x430 [ 297.872204] kthread+0xd8/0xdc [ 297.875251] ret_from_fork+0x10/0x20 [ 297.878820] Code: 928b5ae0 8b000273 91400a60 f943fa61 (79401421) [ 297.884901] ---[ end trace 0000000000000000 ]--- Fix the issue detecting the proper wed reference to use running wed callabacks.
CVE-2025-68361 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: erofs: limit the level of fs stacking for file-backed mounts Otherwise, it could cause potential kernel stack overflow (e.g., EROFS mounting itself).
CVE-2025-68368 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: init bioset in mddev_init IO operations may be needed before md_run(), such as updating metadata after writing sysfs. Without bioset, this triggers a NULL pointer dereference as below: BUG: kernel NULL pointer dereference, address: 0000000000000020 Call Trace: md_update_sb+0x658/0xe00 new_level_store+0xc5/0x120 md_attr_store+0xc9/0x1e0 sysfs_kf_write+0x6f/0xa0 kernfs_fop_write_iter+0x141/0x2a0 vfs_write+0x1fc/0x5a0 ksys_write+0x79/0x180 __x64_sys_write+0x1d/0x30 x64_sys_call+0x2818/0x2880 do_syscall_64+0xa9/0x580 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Reproducer ``` mdadm -CR /dev/md0 -l1 -n2 /dev/sd[cd] echo inactive > /sys/block/md0/md/array_state echo 10 > /sys/block/md0/md/new_level ``` mddev_init() can only be called once per mddev, no need to test if bioset has been initialized anymore.
CVE-2025-68370 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: tmc: add the handle of the event to the path The handle is essential for retrieving the AUX_EVENT of each CPU and is required in perf mode. It has been added to the coresight_path so that dependent devices can access it from the path when needed. The existing bug can be reproduced with: perf record -e cs_etm//k -C 0-9 dd if=/dev/zero of=/dev/null Showing an oops as follows: Unable to handle kernel paging request at virtual address 000f6e84934ed19e Call trace: tmc_etr_get_buffer+0x30/0x80 [coresight_tmc] (P) catu_enable_hw+0xbc/0x3d0 [coresight_catu] catu_enable+0x70/0xe0 [coresight_catu] coresight_enable_path+0xb0/0x258 [coresight]
CVE-2025-68377 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ns: initialize ns_list_node for initial namespaces Make sure that the list is always initialized for initial namespaces.
CVE-2025-68373 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: avoid repeated calls to del_gendisk There is a uaf problem which is found by case 23rdev-lifetime: Oops: general protection fault, probably for non-canonical address 0xdead000000000122 RIP: 0010:bdi_unregister+0x4b/0x170 Call Trace: <TASK> __del_gendisk+0x356/0x3e0 mddev_unlock+0x351/0x360 rdev_attr_store+0x217/0x280 kernfs_fop_write_iter+0x14a/0x210 vfs_write+0x29e/0x550 ksys_write+0x74/0xf0 do_syscall_64+0xbb/0x380 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7ff5250a177e The sequence is: 1. rdev remove path gets reconfig_mutex 2. rdev remove path release reconfig_mutex in mddev_unlock 3. md stop calls do_md_stop and sets MD_DELETED 4. rdev remove path calls del_gendisk because MD_DELETED is set 5. md stop path release reconfig_mutex and calls del_gendisk again So there is a race condition we should resolve. This patch adds a flag MD_DO_DELETE to avoid the race condition.
CVE-2025-68374 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: fix rcu protection in md_wakeup_thread We attempted to use RCU to protect the pointer 'thread', but directly passed the value when calling md_wakeup_thread(). This means that the RCU pointer has been acquired before rcu_read_lock(), which renders rcu_read_lock() ineffective and could lead to a use-after-free.
CVE-2025-68376 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: ETR: Fix ETR buffer use-after-free issue When ETR is enabled as CS_MODE_SYSFS, if the buffer size is changed and enabled again, currently sysfs_buf will point to the newly allocated memory(buf_new) and free the old memory(buf_old). But the etr_buf that is being used by the ETR remains pointed to buf_old, not updated to buf_new. In this case, it will result in a memory use-after-free issue. Fix this by checking ETR's mode before updating and releasing buf_old, if the mode is CS_MODE_SYSFS, then skip updating and releasing it.
CVE-2025-68378 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix stackmap overflow check in __bpf_get_stackid() Syzkaller reported a KASAN slab-out-of-bounds write in __bpf_get_stackid() when copying stack trace data. The issue occurs when the perf trace contains more stack entries than the stack map bucket can hold, leading to an out-of-bounds write in the bucket's data array.