Search Results (16780 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68725 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Do not let BPF test infra emit invalid GSO types to stack Yinhao et al. reported that their fuzzer tool was able to trigger a skb_warn_bad_offload() from netif_skb_features() -> gso_features_check(). When a BPF program - triggered via BPF test infra - pushes the packet to the loopback device via bpf_clone_redirect() then mentioned offload warning can be seen. GSO-related features are then rightfully disabled. We get into this situation due to convert___skb_to_skb() setting gso_segs and gso_size but not gso_type. Technically, it makes sense that this warning triggers since the GSO properties are malformed due to the gso_type. Potentially, the gso_type could be marked non-trustworthy through setting it at least to SKB_GSO_DODGY without any other specific assumptions, but that also feels wrong given we should not go further into the GSO engine in the first place. The checks were added in 121d57af308d ("gso: validate gso_type in GSO handlers") because there were malicious (syzbot) senders that combine a protocol with a non-matching gso_type. If we would want to drop such packets, gso_features_check() currently only returns feature flags via netif_skb_features(), so one location for potentially dropping such skbs could be validate_xmit_unreadable_skb(), but then otoh it would be an additional check in the fast-path for a very corner case. Given bpf_clone_redirect() is the only place where BPF test infra could emit such packets, lets reject them right there.
CVE-2025-68730 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Fix page fault in ivpu_bo_unbind_all_bos_from_context() Don't add BO to the vdev->bo_list in ivpu_gem_create_object(). When failure happens inside drm_gem_shmem_create(), the BO is not fully created and ivpu_gem_bo_free() callback will not be called causing a deleted BO to be left on the list.
CVE-2022-50722 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: ipu3-imgu: Fix NULL pointer dereference in active selection access What the IMGU driver did was that it first acquired the pointers to active and try V4L2 subdev state, and only then figured out which one to use. The problem with that approach and a later patch (see Fixes: tag) is that as sd_state argument to v4l2_subdev_get_try_crop() et al is NULL, there is now an attempt to dereference that. Fix this. Also rewrap lines a little.
CVE-2022-50712 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: devlink: hold region lock when flushing snapshots Netdevsim triggers a splat on reload, when it destroys regions with snapshots pending: WARNING: CPU: 1 PID: 787 at net/core/devlink.c:6291 devlink_region_snapshot_del+0x12e/0x140 CPU: 1 PID: 787 Comm: devlink Not tainted 6.1.0-07460-g7ae9888d6e1c #580 RIP: 0010:devlink_region_snapshot_del+0x12e/0x140 Call Trace: <TASK> devl_region_destroy+0x70/0x140 nsim_dev_reload_down+0x2f/0x60 [netdevsim] devlink_reload+0x1f7/0x360 devlink_nl_cmd_reload+0x6ce/0x860 genl_family_rcv_msg_doit.isra.0+0x145/0x1c0 This is the locking assert in devlink_region_snapshot_del(), we're supposed to be holding the region->snapshot_lock here.
CVE-2022-50721 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: qcom-adm: fix wrong calling convention for prep_slave_sg The calling convention for pre_slave_sg is to return NULL on error and provide an error log to the system. Qcom-adm instead provide error pointer when an error occur. This indirectly cause kernel panic for example for the nandc driver that checks only if the pointer returned by device_prep_slave_sg is not NULL. Returning an error pointer makes nandc think the device_prep_slave_sg function correctly completed and makes the kernel panics later in the code. While nandc is the one that makes the kernel crash, it was pointed out that the real problem is qcom-adm not following calling convention for that function. To fix this, drop returning error pointer and return NULL with an error log.
CVE-2022-50714 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921e: fix rmmod crash in driver reload test In insmod/rmmod stress test, the following crash dump shows up immediately. The problem is caused by missing mt76_dev in mt7921_pci_remove(). We should make sure the drvdata is ready before probe() finished. [168.862789] ================================================================== [168.862797] BUG: KASAN: user-memory-access in try_to_grab_pending+0x59/0x480 [168.862805] Write of size 8 at addr 0000000000006df0 by task rmmod/5361 [168.862812] CPU: 7 PID: 5361 Comm: rmmod Tainted: G OE 5.19.0-rc6 #1 [168.862816] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, 05/04/2020 [168.862820] Call Trace: [168.862822] <TASK> [168.862825] dump_stack_lvl+0x49/0x63 [168.862832] print_report.cold+0x493/0x6b7 [168.862845] kasan_report+0xa7/0x120 [168.862857] kasan_check_range+0x163/0x200 [168.862861] __kasan_check_write+0x14/0x20 [168.862866] try_to_grab_pending+0x59/0x480 [168.862870] __cancel_work_timer+0xbb/0x340 [168.862898] cancel_work_sync+0x10/0x20 [168.862902] mt7921_pci_remove+0x61/0x1c0 [mt7921e] [168.862909] pci_device_remove+0xa3/0x1d0 [168.862914] device_remove+0xc4/0x170 [168.862920] device_release_driver_internal+0x163/0x300 [168.862925] driver_detach+0xc7/0x1a0 [168.862930] bus_remove_driver+0xeb/0x2d0 [168.862935] driver_unregister+0x71/0xb0 [168.862939] pci_unregister_driver+0x30/0x230 [168.862944] mt7921_pci_driver_exit+0x10/0x1b [mt7921e] [168.862949] __x64_sys_delete_module+0x2f9/0x4b0 [168.862968] do_syscall_64+0x38/0x90 [168.862973] entry_SYSCALL_64_after_hwframe+0x63/0xcd Test steps: 1. insmode 2. do not ifup 3. rmmod quickly (within 1 second)
CVE-2022-50718 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix pci device refcount leak As comment of pci_get_domain_bus_and_slot() says, it returns a pci device with refcount increment, when finish using it, the caller must decrement the reference count by calling pci_dev_put(). So before returning from amdgpu_device_resume|suspend_display_audio(), pci_dev_put() is called to avoid refcount leak.
CVE-2022-50723 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: fix memory leak in bnxt_nvm_test() Free the kzalloc'ed buffer before returning in the success path.
CVE-2022-50724 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix resource leak in regulator_register() I got some resource leak reports while doing fault injection test: OF: ERROR: memory leak, expected refcount 1 instead of 100, of_node_get()/of_node_put() unbalanced - destroy cset entry: attach overlay node /i2c/pmic@64/regulators/buck1 unreferenced object 0xffff88810deea000 (size 512): comm "490-i2c-rt5190a", pid 253, jiffies 4294859840 (age 5061.046s) hex dump (first 32 bytes): 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N.......... ff ff ff ff ff ff ff ff a0 1e 00 a1 ff ff ff ff ................ backtrace: [<00000000d78541e2>] kmalloc_trace+0x21/0x110 [<00000000b343d153>] device_private_init+0x32/0xd0 [<00000000be1f0c70>] device_add+0xb2d/0x1030 [<00000000e3e6344d>] regulator_register+0xaf2/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] unreferenced object 0xffff88810b617b80 (size 32): comm "490-i2c-rt5190a", pid 253, jiffies 4294859904 (age 5060.983s) hex dump (first 32 bytes): 72 65 67 75 6c 61 74 6f 72 2e 32 38 36 38 2d 53 regulator.2868-S 55 50 50 4c 59 00 ff ff 29 00 00 00 2b 00 00 00 UPPLY...)...+... backtrace: [<000000009da9280d>] __kmalloc_node_track_caller+0x44/0x1b0 [<0000000025c6a4e5>] kstrdup+0x3a/0x70 [<00000000790efb69>] create_regulator+0xc0/0x4e0 [<0000000005ed203a>] regulator_resolve_supply+0x2d4/0x440 [<0000000045796214>] regulator_register+0x10b3/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] After calling regulator_resolve_supply(), the 'rdev->supply' is set by set_supply(), after this set, in the error path, the resources need be released, so call regulator_put() to avoid the leaks.
CVE-2022-50725 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: vidtv: Fix use-after-free in vidtv_bridge_dvb_init() KASAN reports a use-after-free: BUG: KASAN: use-after-free in dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core] Call Trace: ... dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core] vidtv_bridge_probe+0x7bf/0xa40 [dvb_vidtv_bridge] platform_probe+0xb6/0x170 ... Allocated by task 1238: ... dvb_register_device+0x1a7/0xa70 [dvb_core] dvb_dmxdev_init+0x2af/0x4a0 [dvb_core] vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge] ... Freed by task 1238: dvb_register_device+0x6d2/0xa70 [dvb_core] dvb_dmxdev_init+0x2af/0x4a0 [dvb_core] vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge] ... It is because the error handling in vidtv_bridge_dvb_init() is wrong. First, vidtv_bridge_dmx(dev)_init() will clean themselves when fail, but goto fail_dmx(_dev): calls release functions again, which causes use-after-free. Also, in fail_fe, fail_tuner_probe and fail_demod_probe, j = i will cause out-of-bound when i finished its loop (i == NUM_FE). And the loop releasing is wrong, although now NUM_FE is 1 so it won't cause problem. Fix this by correctly releasing everything.
CVE-2022-50727 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: efct: Fix possible memleak in efct_device_init() In efct_device_init(), when efct_scsi_reg_fc_transport() fails, efct_scsi_tgt_driver_exit() is not called to release memory for efct_scsi_tgt_driver_init() and causes memleak: unreferenced object 0xffff8881020ce000 (size 2048): comm "modprobe", pid 465, jiffies 4294928222 (age 55.872s) backtrace: [<0000000021a1ef1b>] kmalloc_trace+0x27/0x110 [<000000004c3ed51c>] target_register_template+0x4fd/0x7b0 [target_core_mod] [<00000000f3393296>] efct_scsi_tgt_driver_init+0x18/0x50 [efct] [<00000000115de533>] 0xffffffffc0d90011 [<00000000d608f646>] do_one_initcall+0xd0/0x4e0 [<0000000067828cf1>] do_init_module+0x1cc/0x6a0 ...
CVE-2022-50729 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: Fix resource leak in ksmbd_session_rpc_open() When ksmbd_rpc_open() fails then it must call ksmbd_rpc_id_free() to undo the result of ksmbd_ipc_id_alloc().
CVE-2022-50730 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: silence the warning when evicting inode with dioread_nolock When evicting an inode with default dioread_nolock, it could be raced by the unwritten extents converting kworker after writeback some new allocated dirty blocks. It convert unwritten extents to written, the extents could be merged to upper level and free extent blocks, so it could mark the inode dirty again even this inode has been marked I_FREEING. But the inode->i_io_list check and warning in ext4_evict_inode() missing this corner case. Fortunately, ext4_evict_inode() will wait all extents converting finished before this check, so it will not lead to inode use-after-free problem, every thing is OK besides this warning. The WARN_ON_ONCE was originally designed for finding inode use-after-free issues in advance, but if we add current dioread_nolock case in, it will become not quite useful, so fix this warning by just remove this check. ====== WARNING: CPU: 7 PID: 1092 at fs/ext4/inode.c:227 ext4_evict_inode+0x875/0xc60 ... RIP: 0010:ext4_evict_inode+0x875/0xc60 ... Call Trace: <TASK> evict+0x11c/0x2b0 iput+0x236/0x3a0 do_unlinkat+0x1b4/0x490 __x64_sys_unlinkat+0x4c/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7fa933c1115b ====== rm kworker ext4_end_io_end() vfs_unlink() ext4_unlink() ext4_convert_unwritten_io_end_vec() ext4_convert_unwritten_extents() ext4_map_blocks() ext4_ext_map_blocks() ext4_ext_try_to_merge_up() __mark_inode_dirty() check !I_FREEING locked_inode_to_wb_and_lock_list() iput() iput_final() evict() ext4_evict_inode() truncate_inode_pages_final() //wait release io_end inode_io_list_move_locked() ext4_release_io_end() trigger WARN_ON_ONCE()
CVE-2022-50738 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vhost-vdpa: fix an iotlb memory leak Before commit 3d5698793897 ("vhost-vdpa: introduce asid based IOTLB") we called vhost_vdpa_iotlb_unmap(v, iotlb, 0ULL, 0ULL - 1) during release to free all the resources allocated when processing user IOTLB messages through vhost_vdpa_process_iotlb_update(). That commit changed the handling of IOTLB a bit, and we accidentally removed some code called during the release. We partially fixed this with commit 037d4305569a ("vhost-vdpa: call vhost_vdpa_cleanup during the release") but a potential memory leak is still there as showed by kmemleak if the application does not send VHOST_IOTLB_INVALIDATE or crashes: unreferenced object 0xffff888007fbaa30 (size 16): comm "blkio-bench", pid 914, jiffies 4294993521 (age 885.500s) hex dump (first 16 bytes): 40 73 41 07 80 88 ff ff 00 00 00 00 00 00 00 00 @sA............. backtrace: [<0000000087736d2a>] kmem_cache_alloc_trace+0x142/0x1c0 [<0000000060740f50>] vhost_vdpa_process_iotlb_msg+0x68c/0x901 [vhost_vdpa] [<0000000083e8e205>] vhost_chr_write_iter+0xc0/0x4a0 [vhost] [<000000008f2f414a>] vhost_vdpa_chr_write_iter+0x18/0x20 [vhost_vdpa] [<00000000de1cd4a0>] vfs_write+0x216/0x4b0 [<00000000a2850200>] ksys_write+0x71/0xf0 [<00000000de8e720b>] __x64_sys_write+0x19/0x20 [<0000000018b12cbb>] do_syscall_64+0x3f/0x90 [<00000000986ec465>] entry_SYSCALL_64_after_hwframe+0x63/0xcd Let's fix this calling vhost_vdpa_iotlb_unmap() on the whole range in vhost_vdpa_remove_as(). We move that call before vhost_dev_cleanup() since we need a valid v->vdev.mm in vhost_vdpa_pa_unmap(). vhost_iotlb_reset() call can be removed, since vhost_vdpa_iotlb_unmap() on the whole range removes all the entries. The kmemleak log reported was observed with a vDPA device that has `use_va` set to true (e.g. VDUSE). This patch has been tested with both types of devices.
CVE-2022-50740 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: hif_usb: fix memory leak of urbs in ath9k_hif_usb_dealloc_tx_urbs() Syzkaller reports a long-known leak of urbs in ath9k_hif_usb_dealloc_tx_urbs(). The cause of the leak is that usb_get_urb() is called but usb_free_urb() (or usb_put_urb()) is not called inside usb_kill_urb() as urb->dev or urb->ep fields have not been initialized and usb_kill_urb() returns immediately. The patch removes trying to kill urbs located in hif_dev->tx.tx_buf because hif_dev->tx.tx_buf is not supposed to contain urbs which are in pending state (the pending urbs are stored in hif_dev->tx.tx_pending). The tx.tx_lock is acquired so there should not be any changes in the list. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2022-50743 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: erofs: Fix pcluster memleak when its block address is zero syzkaller reported a memleak: https://syzkaller.appspot.com/bug?id=62f37ff612f0021641eda5b17f056f1668aa9aed unreferenced object 0xffff88811009c7f8 (size 136): ... backtrace: [<ffffffff821db19b>] z_erofs_do_read_page+0x99b/0x1740 [<ffffffff821dee9e>] z_erofs_readahead+0x24e/0x580 [<ffffffff814bc0d6>] read_pages+0x86/0x3d0 ... syzkaller constructed a case: in z_erofs_register_pcluster(), ztailpacking = false and map->m_pa = zero. This makes pcl->obj.index be zero although pcl is not a inline pcluster. Then following path adds refcount for grp, but the refcount won't be put because pcl is inline. z_erofs_readahead() z_erofs_do_read_page() # for another page z_erofs_collector_begin() erofs_find_workgroup() erofs_workgroup_get() Since it's illegal for the block address of a non-inlined pcluster to be zero, add check here to avoid registering the pcluster which would be leaked.
CVE-2022-50745 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: media: tegra-video: fix device_node use after free At probe time this code path is followed: * tegra_csi_init * tegra_csi_channels_alloc * for_each_child_of_node(node, channel) -- iterates over channels * automatically gets 'channel' * tegra_csi_channel_alloc() * saves into chan->of_node a pointer to the channel OF node * automatically gets and puts 'channel' * now the node saved in chan->of_node has refcount 0, can disappear * tegra_csi_channels_init * iterates over channels * tegra_csi_channel_init -- uses chan->of_node After that, chan->of_node keeps storing the node until the device is removed. of_node_get() the node and of_node_put() it during teardown to avoid any risk.
CVE-2022-50747 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: hfs: Fix OOB Write in hfs_asc2mac Syzbot reported a OOB Write bug: loop0: detected capacity change from 0 to 64 ================================================================== BUG: KASAN: slab-out-of-bounds in hfs_asc2mac+0x467/0x9a0 fs/hfs/trans.c:133 Write of size 1 at addr ffff88801848314e by task syz-executor391/3632 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report+0xcd/0x100 mm/kasan/report.c:495 hfs_asc2mac+0x467/0x9a0 fs/hfs/trans.c:133 hfs_cat_build_key+0x92/0x170 fs/hfs/catalog.c:28 hfs_lookup+0x1ab/0x2c0 fs/hfs/dir.c:31 lookup_open fs/namei.c:3391 [inline] open_last_lookups fs/namei.c:3481 [inline] path_openat+0x10e6/0x2df0 fs/namei.c:3710 do_filp_open+0x264/0x4f0 fs/namei.c:3740 If in->len is much larger than HFS_NAMELEN(31) which is the maximum length of an HFS filename, a OOB write could occur in hfs_asc2mac(). In that case, when the dst reaches the boundary, the srclen is still greater than 0, which causes a OOB write. Fix this by adding a check on dstlen in while() before writing to dst address.
CVE-2022-50751 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: configfs: fix possible memory leak in configfs_create_dir() kmemleak reported memory leaks in configfs_create_dir(): unreferenced object 0xffff888009f6af00 (size 192): comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s) backtrace: kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273) new_fragment (./include/linux/slab.h:600 fs/configfs/dir.c:163) configfs_register_subsystem (fs/configfs/dir.c:1857) basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... unreferenced object 0xffff888003ba7180 (size 96): comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s) backtrace: kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273) configfs_new_dirent (./include/linux/slab.h:723 fs/configfs/dir.c:194) configfs_make_dirent (fs/configfs/dir.c:248) configfs_create_dir (fs/configfs/dir.c:296) configfs_attach_group.isra.28 (fs/configfs/dir.c:816 fs/configfs/dir.c:852) configfs_register_subsystem (fs/configfs/dir.c:1881) basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... This is because the refcount is not correct in configfs_make_dirent(). For normal stage, the refcount is changing as: configfs_register_subsystem() configfs_create_dir() configfs_make_dirent() configfs_new_dirent() # set s_count = 1 dentry->d_fsdata = configfs_get(sd); # s_count = 2 ... configfs_unregister_subsystem() configfs_remove_dir() remove_dir() configfs_remove_dirent() # s_count = 1 dput() ... *dentry_unlink_inode()* configfs_d_iput() # s_count = 0, release However, if we failed in configfs_create(): configfs_register_subsystem() configfs_create_dir() configfs_make_dirent() # s_count = 2 ... configfs_create() # fail ->out_remove: configfs_remove_dirent(dentry) configfs_put(sd) # s_count = 1 return PTR_ERR(inode); There is no inode in the error path, so the configfs_d_iput() is lost and makes sd and fragment memory leaked. To fix this, when we failed in configfs_create(), manually call configfs_put(sd) to keep the refcount correct.
CVE-2022-50754 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: apparmor: fix a memleak in multi_transaction_new() In multi_transaction_new(), the variable t is not freed or passed out on the failure of copy_from_user(t->data, buf, size), which could lead to a memleak. Fix this bug by adding a put_multi_transaction(t) in the error path.