| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A stack-based buffer overflow vulnerability exists in the Cloud API functionality of Tenda AC6 V5.0 V02.03.01.110. A specially crafted HTTP response can lead to arbitrary code execution. An attacker can send an HTTP response to trigger this vulnerability. |
| Corosync through 3.1.9, if encryption is disabled or the attacker knows the encryption key, has a stack-based buffer overflow in orf_token_endian_convert in exec/totemsrp.c via a large UDP packet. |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in cuobjdump where an attacker may cause a stack-based buffer overflow by getting the user to run cuobjdump on a malicious ELF file. A successful exploit of this vulnerability may lead to arbitrary code execution at the privilege level of the user running
cuobjdump. |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm where a user may cause an out-of-bounds write by running nvdisasm on a malicious ELF file. A successful exploit of this vulnerability may lead to denial of service. |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm where an attacker may cause a heap-based buffer overflow by getting the user to run nvdisasm on a malicious ELF file. A successful exploit of this vulnerability may lead to arbitrary code execution at the privilege level of the user running nvdisasm. |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
| A vulnerability in the PDF scanning processes of ClamAV could allow an unauthenticated, remote attacker to cause a buffer overflow condition, cause a denial of service (DoS) condition, or execute arbitrary code on an affected device.
This vulnerability exists because memory buffers are allocated incorrectly when PDF files are processed. An attacker could exploit this vulnerability by submitting a crafted PDF file to be scanned by ClamAV on an affected device. A successful exploit could allow the attacker to trigger a buffer overflow, likely resulting in the termination of the ClamAV scanning process and a DoS condition on the affected software. Although unproven, there is also a possibility that an attacker could leverage the buffer overflow to execute arbitrary code with the privileges of the ClamAV process. |
| A vulnerability in the Object Linking and Embedding 2 (OLE2) decryption routine of ClamAV could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device.
This vulnerability is due to an integer underflow in a bounds check that allows for a heap buffer overflow read. An attacker could exploit this vulnerability by submitting a crafted file containing OLE2 content to be scanned by ClamAV on an affected device. A successful exploit could allow the attacker to terminate the ClamAV scanning process, resulting in a DoS condition on the affected software.
For a description of this vulnerability, see the .
Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability. |
| Incorrect boundary conditions in the JavaScript: GC component. This vulnerability affects Firefox < 143, Firefox ESR < 140.3, Thunderbird < 143, and Thunderbird < 140.3. |
| LuaJIT through 2.1 and OpenRusty luajit2 before v2.1-20240314 have an out-of-bounds read in the stack-overflow handler in lj_state.c. |
| LuaJIT through 2.1 and OpenRusty luajit2 before v2.1-20240314 have an unsinking of IR_FSTORE for NULL metatable, which leads to Denial of Service (DoS). |
| LuaJIT through 2.1 and OpenRusty luajit2 before v2.1-20240626 have a stack-buffer-overflow in lj_strfmt_wfnum in lj_strfmt_num.c. |
| LuaJIT through 2.1.0-beta3 has an out-of-bounds read in lj_err_run in lj_err.c. |
| LuaJit through 2.1.0-beta3 has an out-of-bounds read because __gc handler frame traversal is mishandled. |
| Multiple stack-based buffer overflows in Schneider Electric VAMPSET 2.2.136 and earlier allow local users to cause a denial of service (application halt) via a malformed (1) setting file or (2) disturbance recording file. |
| ServiceNow has addressed an input validation vulnerability that was identified in Vancouver and Washington DC Now Platform releases. This vulnerability could enable an unauthenticated user to remotely execute code within the context of the Now Platform. ServiceNow applied an update to hosted instances, and ServiceNow released the update to our partners and self-hosted customers. Listed below are the patches and hot fixes that address the vulnerability. If you have not done so already, we recommend applying security patches relevant to your instance as soon as possible. |
| D-Link DIR820LA1_FW106B02 was discovered to contain a buffer overflow via the nextPage parameter at ping.ccp. |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Use kernel helpers for hex dumps
Previously, when the driver was printing hex dumps, the buffer was cast
to an 8 byte long and printed using string formatters. If the buffer
size was not a multiple of 8 then a read buffer overflow was possible.
Therefore, create a new ibmvnic function that loops over a buffer and
calls hex_dump_to_buffer instead.
This patch address KASAN reports like the one below:
ibmvnic 30000003 env3: Login Buffer:
ibmvnic 30000003 env3: 01000000af000000
<...>
ibmvnic 30000003 env3: 2e6d62692e736261
ibmvnic 30000003 env3: 65050003006d6f63
==================================================================
BUG: KASAN: slab-out-of-bounds in ibmvnic_login+0xacc/0xffc [ibmvnic]
Read of size 8 at addr c0000001331a9aa8 by task ip/17681
<...>
Allocated by task 17681:
<...>
ibmvnic_login+0x2f0/0xffc [ibmvnic]
ibmvnic_open+0x148/0x308 [ibmvnic]
__dev_open+0x1ac/0x304
<...>
The buggy address is located 168 bytes inside of
allocated 175-byte region [c0000001331a9a00, c0000001331a9aaf)
<...>
=================================================================
ibmvnic 30000003 env3: 000000000033766e |
| In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: fix out-of-range access of vnic_info array
The bnxt_queue_{start | stop}() access vnic_info as much as allocated,
which indicates bp->nr_vnics.
So, it should not reach bp->vnic_info[bp->nr_vnics]. |