| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The ReadMNGImage function in coders/png.c in GraphicsMagick 1.3.26 mishandles large MNG images, leading to an invalid memory read in the SetImageColorCallBack function in magick/image.c. |
| The ReadWMFImage function in coders/wmf.c in GraphicsMagick 1.3.26 has a use-after-free issue for data associated with exception reporting. |
| The ReadSUNImage function in coders/sun.c in GraphicsMagick 1.3.26 has a colormap heap-based buffer over-read. |
| The IEEE 802.11 parser in tcpdump before 4.9.2 has a buffer over-read in print-802_11.c:parse_elements(). |
| The Juniper protocols parser in tcpdump before 4.9.2 has a buffer over-read in print-juniper.c:juniper_parse_header(). |
| GraphicsMagick 1.3.26 has a heap-based buffer overflow vulnerability in the function GetStyleTokens in coders/svg.c:314:12. |
| GraphicsMagick 1.3.26 has a heap-based buffer overflow vulnerability in the function GetStyleTokens in coders/svg.c:311:12. |
| GraphicsMagick 1.3.26 has a NULL pointer dereference vulnerability in the function SVGStartElement in coders/svg.c. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Pairwise Transient Key (PTK) Temporal Key (TK) during the four-way handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the four-way handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the four-way handshake, allowing an attacker within radio range to spoof frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the group key handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the group key handshake, allowing an attacker within radio range to spoof frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11r allows reinstallation of the Pairwise Transient Key (PTK) Temporal Key (TK) during the fast BSS transmission (FT) handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Station-To-Station-Link (STSL) Transient Key (STK) during the PeerKey handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Tunneled Direct-Link Setup (TDLS) Peer Key (TPK) during the TDLS handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) that support 802.11v allows reinstallation of the Group Temporal Key (GTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame, allowing an attacker within radio range to replay frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that support 802.11v allows reinstallation of the Integrity Group Temporal Key (IGTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame, allowing an attacker within radio range to replay frames from access points to clients. |
| The http.c:skip_short_body() function is called in some circumstances, such as when processing redirects. When the response is sent chunked in wget before 1.19.2, the chunk parser uses strtol() to read each chunk's length, but doesn't check that the chunk length is a non-negative number. The code then tries to skip the chunk in pieces of 512 bytes by using the MIN() macro, but ends up passing the negative chunk length to connect.c:fd_read(). As fd_read() takes an int argument, the high 32 bits of the chunk length are discarded, leaving fd_read() with a completely attacker controlled length argument. |
| The retr.c:fd_read_body() function is called when processing OK responses. When the response is sent chunked in wget before 1.19.2, the chunk parser uses strtol() to read each chunk's length, but doesn't check that the chunk length is a non-negative number. The code then tries to read the chunk in pieces of 8192 bytes by using the MIN() macro, but ends up passing the negative chunk length to retr.c:fd_read(). As fd_read() takes an int argument, the high 32 bits of the chunk length are discarded, leaving fd_read() with a completely attacker controlled length argument. The attacker can corrupt malloc metadata after the allocated buffer. |