| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: host: fix double-free of struct nvme_id_ns in ns_update_nuse()
When nvme_identify_ns() fails, it frees the pointer to the struct
nvme_id_ns before it returns. However, ns_update_nuse() calls kfree()
for the pointer even when nvme_identify_ns() fails. This results in
KASAN double-free, which was observed with blktests nvme/045 with
proposed patches [1] on the kernel v6.8-rc7. Fix the double-free by
skipping kfree() when nvme_identify_ns() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: fix double-free issue in tcpm_port_unregister_pd()
When unregister pd capabilitie in tcpm, KASAN will capture below double
-free issue. The root cause is the same capabilitiy will be kfreed twice,
the first time is kfreed by pd_capabilities_release() and the second time
is explicitly kfreed by tcpm_port_unregister_pd().
[ 3.988059] BUG: KASAN: double-free in tcpm_port_unregister_pd+0x1a4/0x3dc
[ 3.995001] Free of addr ffff0008164d3000 by task kworker/u16:0/10
[ 4.001206]
[ 4.002712] CPU: 2 PID: 10 Comm: kworker/u16:0 Not tainted 6.8.0-rc5-next-20240220-05616-g52728c567a55 #53
[ 4.012402] Hardware name: Freescale i.MX8QXP MEK (DT)
[ 4.017569] Workqueue: events_unbound deferred_probe_work_func
[ 4.023456] Call trace:
[ 4.025920] dump_backtrace+0x94/0xec
[ 4.029629] show_stack+0x18/0x24
[ 4.032974] dump_stack_lvl+0x78/0x90
[ 4.036675] print_report+0xfc/0x5c0
[ 4.040289] kasan_report_invalid_free+0xa0/0xc0
[ 4.044937] __kasan_slab_free+0x124/0x154
[ 4.049072] kfree+0xb4/0x1e8
[ 4.052069] tcpm_port_unregister_pd+0x1a4/0x3dc
[ 4.056725] tcpm_register_port+0x1dd0/0x2558
[ 4.061121] tcpci_register_port+0x420/0x71c
[ 4.065430] tcpci_probe+0x118/0x2e0
To fix the issue, this will remove kree() from tcpm_port_unregister_pd(). |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Fix double free in SMC transport cleanup path
When the generic SCMI code tears down a channel, it calls the chan_free
callback function, defined by each transport. Since multiple protocols
might share the same transport_info member, chan_free() might want to
clean up the same member multiple times within the given SCMI transport
implementation. In this case, it is SMC transport. This will lead to a NULL
pointer dereference at the second time:
| scmi_protocol scmi_dev.1: Enabled polling mode TX channel - prot_id:16
| arm-scmi firmware:scmi: SCMI Notifications - Core Enabled.
| arm-scmi firmware:scmi: unable to communicate with SCMI
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000096000004
| EC = 0x25: DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x04: level 0 translation fault
| Data abort info:
| ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
| CM = 0, WnR = 0, TnD = 0, TagAccess = 0
| GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
| user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881ef8000
| [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
| Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 4 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-00124-g455ef3d016c9-dirty #793
| Hardware name: FVP Base RevC (DT)
| pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
| pc : smc_chan_free+0x3c/0x6c
| lr : smc_chan_free+0x3c/0x6c
| Call trace:
| smc_chan_free+0x3c/0x6c
| idr_for_each+0x68/0xf8
| scmi_cleanup_channels.isra.0+0x2c/0x58
| scmi_probe+0x434/0x734
| platform_probe+0x68/0xd8
| really_probe+0x110/0x27c
| __driver_probe_device+0x78/0x12c
| driver_probe_device+0x3c/0x118
| __driver_attach+0x74/0x128
| bus_for_each_dev+0x78/0xe0
| driver_attach+0x24/0x30
| bus_add_driver+0xe4/0x1e8
| driver_register+0x60/0x128
| __platform_driver_register+0x28/0x34
| scmi_driver_init+0x84/0xc0
| do_one_initcall+0x78/0x33c
| kernel_init_freeable+0x2b8/0x51c
| kernel_init+0x24/0x130
| ret_from_fork+0x10/0x20
| Code: f0004701 910a0021 aa1403e5 97b91c70 (b9400280)
| ---[ end trace 0000000000000000 ]---
Simply check for the struct pointer being NULL before trying to access
its members, to avoid this situation.
This was found when a transport doesn't really work (for instance no SMC
service), the probe routines then tries to clean up, and triggers a crash. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix double-free on socket dismantle
when MPTCP server accepts an incoming connection, it clones its listener
socket. However, the pointer to 'inet_opt' for the new socket has the same
value as the original one: as a consequence, on program exit it's possible
to observe the following splat:
BUG: KASAN: double-free in inet_sock_destruct+0x54f/0x8b0
Free of addr ffff888485950880 by task swapper/25/0
CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Not tainted 6.8.0-rc1+ #609
Hardware name: Supermicro SYS-6027R-72RF/X9DRH-7TF/7F/iTF/iF, BIOS 3.0 07/26/2013
Call Trace:
<IRQ>
dump_stack_lvl+0x32/0x50
print_report+0xca/0x620
kasan_report_invalid_free+0x64/0x90
__kasan_slab_free+0x1aa/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
rcu_do_batch+0x34e/0xd90
rcu_core+0x559/0xac0
__do_softirq+0x183/0x5a4
irq_exit_rcu+0x12d/0x170
sysvec_apic_timer_interrupt+0x6b/0x80
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x16/0x20
RIP: 0010:cpuidle_enter_state+0x175/0x300
Code: 30 00 0f 84 1f 01 00 00 83 e8 01 83 f8 ff 75 e5 48 83 c4 18 44 89 e8 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc fb 45 85 ed <0f> 89 60 ff ff ff 48 c1 e5 06 48 c7 43 18 00 00 00 00 48 83 44 2b
RSP: 0018:ffff888481cf7d90 EFLAGS: 00000202
RAX: 0000000000000000 RBX: ffff88887facddc8 RCX: 0000000000000000
RDX: 1ffff1110ff588b1 RSI: 0000000000000019 RDI: ffff88887fac4588
RBP: 0000000000000004 R08: 0000000000000002 R09: 0000000000043080
R10: 0009b02ea273363f R11: ffff88887fabf42b R12: ffffffff932592e0
R13: 0000000000000004 R14: 0000000000000000 R15: 00000022c880ec80
cpuidle_enter+0x4a/0xa0
do_idle+0x310/0x410
cpu_startup_entry+0x51/0x60
start_secondary+0x211/0x270
secondary_startup_64_no_verify+0x184/0x18b
</TASK>
Allocated by task 6853:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
__kmalloc+0x1eb/0x450
cipso_v4_sock_setattr+0x96/0x360
netlbl_sock_setattr+0x132/0x1f0
selinux_netlbl_socket_post_create+0x6c/0x110
selinux_socket_post_create+0x37b/0x7f0
security_socket_post_create+0x63/0xb0
__sock_create+0x305/0x450
__sys_socket_create.part.23+0xbd/0x130
__sys_socket+0x37/0xb0
__x64_sys_socket+0x6f/0xb0
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Freed by task 6858:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x12c/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
subflow_ulp_release+0x1f0/0x250
tcp_cleanup_ulp+0x6e/0x110
tcp_v4_destroy_sock+0x5a/0x3a0
inet_csk_destroy_sock+0x135/0x390
tcp_fin+0x416/0x5c0
tcp_data_queue+0x1bc8/0x4310
tcp_rcv_state_process+0x15a3/0x47b0
tcp_v4_do_rcv+0x2c1/0x990
tcp_v4_rcv+0x41fb/0x5ed0
ip_protocol_deliver_rcu+0x6d/0x9f0
ip_local_deliver_finish+0x278/0x360
ip_local_deliver+0x182/0x2c0
ip_rcv+0xb5/0x1c0
__netif_receive_skb_one_core+0x16e/0x1b0
process_backlog+0x1e3/0x650
__napi_poll+0xa6/0x500
net_rx_action+0x740/0xbb0
__do_softirq+0x183/0x5a4
The buggy address belongs to the object at ffff888485950880
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes inside of
64-byte region [ffff888485950880, ffff8884859508c0)
The buggy address belongs to the physical page:
page:0000000056d1e95e refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888485950700 pfn:0x485950
flags: 0x57ffffc0000800(slab|node=1|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0057ffffc0000800 ffff88810004c640 ffffea00121b8ac0 dead000000000006
raw: ffff888485950700 0000000000200019 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888485950780: fa fb fb
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: fix memory double free when handle zero packet
829 if (request->complete) {
830 spin_unlock(&priv_dev->lock);
831 usb_gadget_giveback_request(&priv_ep->endpoint,
832 request);
833 spin_lock(&priv_dev->lock);
834 }
835
836 if (request->buf == priv_dev->zlp_buf)
837 cdns3_gadget_ep_free_request(&priv_ep->endpoint, request);
Driver append an additional zero packet request when queue a packet, which
length mod max packet size is 0. When transfer complete, run to line 831,
usb_gadget_giveback_request() will free this requestion. 836 condition is
true, so cdns3_gadget_ep_free_request() free this request again.
Log:
[ 1920.140696][ T150] BUG: KFENCE: use-after-free read in cdns3_gadget_giveback+0x134/0x2c0 [cdns3]
[ 1920.140696][ T150]
[ 1920.151837][ T150] Use-after-free read at 0x000000003d1cd10b (in kfence-#36):
[ 1920.159082][ T150] cdns3_gadget_giveback+0x134/0x2c0 [cdns3]
[ 1920.164988][ T150] cdns3_transfer_completed+0x438/0x5f8 [cdns3]
Add check at line 829, skip call usb_gadget_giveback_request() if it is
additional zero length packet request. Needn't call
usb_gadget_giveback_request() because it is allocated in this driver. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix double-free of blocks due to wrong extents moved_len
In ext4_move_extents(), moved_len is only updated when all moves are
successfully executed, and only discards orig_inode and donor_inode
preallocations when moved_len is not zero. When the loop fails to exit
after successfully moving some extents, moved_len is not updated and
remains at 0, so it does not discard the preallocations.
If the moved extents overlap with the preallocated extents, the
overlapped extents are freed twice in ext4_mb_release_inode_pa() and
ext4_process_freed_data() (as described in commit 94d7c16cbbbd ("ext4:
Fix double-free of blocks with EXT4_IOC_MOVE_EXT")), and bb_free is
incremented twice. Hence when trim is executed, a zero-division bug is
triggered in mb_update_avg_fragment_size() because bb_free is not zero
and bb_fragments is zero.
Therefore, update move_len after each extent move to avoid the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix double-free bug
The storage for the TLV PC register data wasn't done like all
the other storage in the drv->fw area, which is cleared at the
end of deallocation. Therefore, the freeing must also be done
differently, explicitly NULL'ing it out after the free, since
otherwise there's a nasty double-free bug here if a file fails
to load after this has been parsed, and we get another free
later (e.g. because no other file exists.) Fix that by adding
the missing NULL assignment. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: misc: ljca: Fix double free in error handling path
When auxiliary_device_add() returns error and then calls
auxiliary_device_uninit(), callback function ljca_auxdev_release
calls kfree(auxdev->dev.platform_data) to free the parameter data
of the function ljca_new_client_device. The callers of
ljca_new_client_device shouldn't call kfree() again
in the error handling path to free the platform data.
Fix this by cleaning up the redundant kfree() in all callers and
adding kfree() the passed in platform_data on errors which happen
before auxiliary_device_init() succeeds . |
| In the Linux kernel, the following vulnerability has been resolved:
net: pds_core: Fix possible double free in error handling path
When auxiliary_device_add() returns error and then calls
auxiliary_device_uninit(), Callback function pdsc_auxbus_dev_release
calls kfree(padev) to free memory. We shouldn't call kfree(padev)
again in the error handling path.
Fix this by cleaning up the redundant kfree() and putting
the error handling back to where the errors happened. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/core: Fix use-after-free bug in dup_user_cpus_ptr()
Since commit 07ec77a1d4e8 ("sched: Allow task CPU affinity to be
restricted on asymmetric systems"), the setting and clearing of
user_cpus_ptr are done under pi_lock for arm64 architecture. However,
dup_user_cpus_ptr() accesses user_cpus_ptr without any lock
protection. Since sched_setaffinity() can be invoked from another
process, the process being modified may be undergoing fork() at
the same time. When racing with the clearing of user_cpus_ptr in
__set_cpus_allowed_ptr_locked(), it can lead to user-after-free and
possibly double-free in arm64 kernel.
Commit 8f9ea86fdf99 ("sched: Always preserve the user requested
cpumask") fixes this problem as user_cpus_ptr, once set, will never
be cleared in a task's lifetime. However, this bug was re-introduced
in commit 851a723e45d1 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") which allows the clearing of user_cpus_ptr in
do_set_cpus_allowed(). This time, it will affect all arches.
Fix this bug by always clearing the user_cpus_ptr of the newly
cloned/forked task before the copying process starts and check the
user_cpus_ptr state of the source task under pi_lock.
Note to stable, this patch won't be applicable to stable releases.
Just copy the new dup_user_cpus_ptr() function over. |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: Set lineevent_state::irq after IRQ register successfully
When running gpio test on nxp-ls1028 platform with below command
gpiomon --num-events=3 --rising-edge gpiochip1 25
There will be a warning trace as below:
Call trace:
free_irq+0x204/0x360
lineevent_free+0x64/0x70
gpio_ioctl+0x598/0x6a0
__arm64_sys_ioctl+0xb4/0x100
invoke_syscall+0x5c/0x130
......
el0t_64_sync+0x1a0/0x1a4
The reason of this issue is that calling request_threaded_irq()
function failed, and then lineevent_free() is invoked to release
the resource. Since the lineevent_state::irq was already set, so
the subsequent invocation of free_irq() would trigger the above
warning call trace. To fix this issue, set the lineevent_state::irq
after the IRQ register successfully. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab_common: fix possible double free of kmem_cache
When doing slub_debug test, kfence's 'test_memcache_typesafe_by_rcu'
kunit test case cause a use-after-free error:
BUG: KASAN: use-after-free in kobject_del+0x14/0x30
Read of size 8 at addr ffff888007679090 by task kunit_try_catch/261
CPU: 1 PID: 261 Comm: kunit_try_catch Tainted: G B N 6.0.0-rc5-next-20220916 #17
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x48
print_address_description.constprop.0+0x87/0x2a5
print_report+0x103/0x1ed
kasan_report+0xb7/0x140
kobject_del+0x14/0x30
kmem_cache_destroy+0x130/0x170
test_exit+0x1a/0x30
kunit_try_run_case+0xad/0xc0
kunit_generic_run_threadfn_adapter+0x26/0x50
kthread+0x17b/0x1b0
</TASK>
The cause is inside kmem_cache_destroy():
kmem_cache_destroy
acquire lock/mutex
shutdown_cache
schedule_work(kmem_cache_release) (if RCU flag set)
release lock/mutex
kmem_cache_release (if RCU flag not set)
In some certain timing, the scheduled work could be run before
the next RCU flag checking, which can then get a wrong value
and lead to double kmem_cache_release().
Fix it by caching the RCU flag inside protected area, just like 'refcnt' |
| In the Linux kernel, the following vulnerability has been resolved:
IB/mlx5: Fix init stage error handling to avoid double free of same QP and UAF
In the unlikely event that workqueue allocation fails and returns NULL in
mlx5_mkey_cache_init(), delete the call to
mlx5r_umr_resource_cleanup() (which frees the QP) in
mlx5_ib_stage_post_ib_reg_umr_init(). This will avoid attempted double
free of the same QP when __mlx5_ib_add() does its cleanup.
Resolves a splat:
Syzkaller reported a UAF in ib_destroy_qp_user
workqueue: Failed to create a rescuer kthread for wq "mkey_cache": -EINTR
infiniband mlx5_0: mlx5_mkey_cache_init:981:(pid 1642):
failed to create work queue
infiniband mlx5_0: mlx5_ib_stage_post_ib_reg_umr_init:4075:(pid 1642):
mr cache init failed -12
==================================================================
BUG: KASAN: slab-use-after-free in ib_destroy_qp_user (drivers/infiniband/core/verbs.c:2073)
Read of size 8 at addr ffff88810da310a8 by task repro_upstream/1642
Call Trace:
<TASK>
kasan_report (mm/kasan/report.c:590)
ib_destroy_qp_user (drivers/infiniband/core/verbs.c:2073)
mlx5r_umr_resource_cleanup (drivers/infiniband/hw/mlx5/umr.c:198)
__mlx5_ib_add (drivers/infiniband/hw/mlx5/main.c:4178)
mlx5r_probe (drivers/infiniband/hw/mlx5/main.c:4402)
...
</TASK>
Allocated by task 1642:
__kmalloc (./include/linux/kasan.h:198 mm/slab_common.c:1026
mm/slab_common.c:1039)
create_qp (./include/linux/slab.h:603 ./include/linux/slab.h:720
./include/rdma/ib_verbs.h:2795 drivers/infiniband/core/verbs.c:1209)
ib_create_qp_kernel (drivers/infiniband/core/verbs.c:1347)
mlx5r_umr_resource_init (drivers/infiniband/hw/mlx5/umr.c:164)
mlx5_ib_stage_post_ib_reg_umr_init (drivers/infiniband/hw/mlx5/main.c:4070)
__mlx5_ib_add (drivers/infiniband/hw/mlx5/main.c:4168)
mlx5r_probe (drivers/infiniband/hw/mlx5/main.c:4402)
...
Freed by task 1642:
__kmem_cache_free (mm/slub.c:1826 mm/slub.c:3809 mm/slub.c:3822)
ib_destroy_qp_user (drivers/infiniband/core/verbs.c:2112)
mlx5r_umr_resource_cleanup (drivers/infiniband/hw/mlx5/umr.c:198)
mlx5_ib_stage_post_ib_reg_umr_init (drivers/infiniband/hw/mlx5/main.c:4076
drivers/infiniband/hw/mlx5/main.c:4065)
__mlx5_ib_add (drivers/infiniband/hw/mlx5/main.c:4168)
mlx5r_probe (drivers/infiniband/hw/mlx5/main.c:4402)
... |
| In the Linux kernel, the following vulnerability has been resolved:
vhost-vdpa: fix use after free in vhost_vdpa_probe()
The put_device() calls vhost_vdpa_release_dev() which calls
ida_simple_remove() and frees "v". So this call to
ida_simple_remove() is a use after free and a double free. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix a double-free in si_dpm_init
When the allocation of
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries fails,
amdgpu_free_extended_power_table is called to free some fields of adev.
However, when the control flow returns to si_dpm_sw_init, it goes to
label dpm_failed and calls si_dpm_fini, which calls
amdgpu_free_extended_power_table again and free those fields again. Thus
a double-free is triggered. |
| In the Linux kernel, the following vulnerability has been resolved:
of: Fix double free in of_parse_phandle_with_args_map
In of_parse_phandle_with_args_map() the inner loop that
iterates through the map entries calls of_node_put(new)
to free the reference acquired by the previous iteration
of the inner loop. This assumes that the value of "new" is
NULL on the first iteration of the inner loop.
Make sure that this is true in all iterations of the outer
loop by setting "new" to NULL after its value is assigned to "cur".
Extend the unittest to detect the double free and add an additional
test case that actually triggers this path. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a potential double-free in fs_any_create_groups
When kcalloc() for ft->g succeeds but kvzalloc() for in fails,
fs_any_create_groups() will free ft->g. However, its caller
fs_any_create_table() will free ft->g again through calling
mlx5e_destroy_flow_table(), which will lead to a double-free.
Fix this by setting ft->g to NULL in fs_any_create_groups(). |
| In the Linux kernel, the following vulnerability has been resolved:
igbvf: fix double free in `igbvf_probe`
In `igbvf_probe`, if register_netdev() fails, the program will go to
label err_hw_init, and then to label err_ioremap. In free_netdev() which
is just below label err_ioremap, there is `list_for_each_entry_safe` and
`netif_napi_del` which aims to delete all entries in `dev->napi_list`.
The program has added an entry `adapter->rx_ring->napi` which is added by
`netif_napi_add` in igbvf_alloc_queues(). However, adapter->rx_ring has
been freed below label err_hw_init. So this a UAF.
In terms of how to patch the problem, we can refer to igbvf_remove() and
delete the entry before `adapter->rx_ring`.
The KASAN logs are as follows:
[ 35.126075] BUG: KASAN: use-after-free in free_netdev+0x1fd/0x450
[ 35.127170] Read of size 8 at addr ffff88810126d990 by task modprobe/366
[ 35.128360]
[ 35.128643] CPU: 1 PID: 366 Comm: modprobe Not tainted 5.15.0-rc2+ #14
[ 35.129789] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 35.131749] Call Trace:
[ 35.132199] dump_stack_lvl+0x59/0x7b
[ 35.132865] print_address_description+0x7c/0x3b0
[ 35.133707] ? free_netdev+0x1fd/0x450
[ 35.134378] __kasan_report+0x160/0x1c0
[ 35.135063] ? free_netdev+0x1fd/0x450
[ 35.135738] kasan_report+0x4b/0x70
[ 35.136367] free_netdev+0x1fd/0x450
[ 35.137006] igbvf_probe+0x121d/0x1a10 [igbvf]
[ 35.137808] ? igbvf_vlan_rx_add_vid+0x100/0x100 [igbvf]
[ 35.138751] local_pci_probe+0x13c/0x1f0
[ 35.139461] pci_device_probe+0x37e/0x6c0
[ 35.165526]
[ 35.165806] Allocated by task 366:
[ 35.166414] ____kasan_kmalloc+0xc4/0xf0
[ 35.167117] foo_kmem_cache_alloc_trace+0x3c/0x50 [igbvf]
[ 35.168078] igbvf_probe+0x9c5/0x1a10 [igbvf]
[ 35.168866] local_pci_probe+0x13c/0x1f0
[ 35.169565] pci_device_probe+0x37e/0x6c0
[ 35.179713]
[ 35.179993] Freed by task 366:
[ 35.180539] kasan_set_track+0x4c/0x80
[ 35.181211] kasan_set_free_info+0x1f/0x40
[ 35.181942] ____kasan_slab_free+0x103/0x140
[ 35.182703] kfree+0xe3/0x250
[ 35.183239] igbvf_probe+0x1173/0x1a10 [igbvf]
[ 35.184040] local_pci_probe+0x13c/0x1f0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: marvell: prestera: fix double free issue on err path
fix error path handling in prestera_bridge_port_join() that
cases prestera driver to crash (see below).
Trace:
Internal error: Oops: 96000044 [#1] SMP
Modules linked in: prestera_pci prestera uio_pdrv_genirq
CPU: 1 PID: 881 Comm: ip Not tainted 5.15.0 #1
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : prestera_bridge_destroy+0x2c/0xb0 [prestera]
lr : prestera_bridge_port_join+0x2cc/0x350 [prestera]
sp : ffff800011a1b0f0
...
x2 : ffff000109ca6c80 x1 : dead000000000100 x0 : dead000000000122
Call trace:
prestera_bridge_destroy+0x2c/0xb0 [prestera]
prestera_bridge_port_join+0x2cc/0x350 [prestera]
prestera_netdev_port_event.constprop.0+0x3c4/0x450 [prestera]
prestera_netdev_event_handler+0xf4/0x110 [prestera]
raw_notifier_call_chain+0x54/0x80
call_netdevice_notifiers_info+0x54/0xa0
__netdev_upper_dev_link+0x19c/0x380 |
| In the Linux kernel, the following vulnerability has been resolved:
regmap: Fix possible double-free in regcache_rbtree_exit()
In regcache_rbtree_insert_to_block(), when 'present' realloc failed,
the 'blk' which is supposed to assign to 'rbnode->block' will be freed,
so 'rbnode->block' points a freed memory, in the error handling path of
regcache_rbtree_init(), 'rbnode->block' will be freed again in
regcache_rbtree_exit(), KASAN will report double-free as follows:
BUG: KASAN: double-free or invalid-free in kfree+0xce/0x390
Call Trace:
slab_free_freelist_hook+0x10d/0x240
kfree+0xce/0x390
regcache_rbtree_exit+0x15d/0x1a0
regcache_rbtree_init+0x224/0x2c0
regcache_init+0x88d/0x1310
__regmap_init+0x3151/0x4a80
__devm_regmap_init+0x7d/0x100
madera_spi_probe+0x10f/0x333 [madera_spi]
spi_probe+0x183/0x210
really_probe+0x285/0xc30
To fix this, moving up the assignment of rbnode->block to immediately after
the reallocation has succeeded so that the data structure stays valid even
if the second reallocation fails. |