| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
quota: Fix potential NULL pointer dereference
Below race may cause NULL pointer dereference
P1 P2
dquot_free_inode quota_off
drop_dquot_ref
remove_dquot_ref
dquots = i_dquot(inode)
dquots = i_dquot(inode)
srcu_read_lock
dquots[cnt]) != NULL (1)
dquots[type] = NULL (2)
spin_lock(&dquots[cnt]->dq_dqb_lock) (3)
....
If dquot_free_inode(or other routines) checks inode's quota pointers (1)
before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer
dereference will be triggered.
So let's fix it by using a temporary pointer to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: edma: Add some null pointer checks to the edma_probe
devm_kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Pointer may be dereferenced
Klocwork tool reported pointer 'rport' returned from call to function
fc_bsg_to_rport() may be NULL and will be dereferenced.
Add a fix to validate rport before dereferencing. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dw2102: Fix null-ptr-deref in dw2102_i2c_transfer()
In dw2102_i2c_transfer, msg is controlled by user. When msg[i].buf
is null and msg[i].len is zero, former checks on msg[i].buf would be
passed. Malicious data finally reach dw2102_i2c_transfer. If accessing
msg[i].buf[0] without sanity check, null ptr deref would happen.
We add check on msg[i].len to prevent crash.
Similar commit:
commit 950e252cb469
("[media] dw2102: limit messages to buffer size") |
| In the Linux kernel, the following vulnerability has been resolved:
media: rc: gpio-ir-recv: add remove function
In case runtime PM is enabled, do runtime PM clean up to remove
cpu latency qos request, otherwise driver removal may have below
kernel dump:
[ 19.463299] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000048
[ 19.472161] Mem abort info:
[ 19.474985] ESR = 0x0000000096000004
[ 19.478754] EC = 0x25: DABT (current EL), IL = 32 bits
[ 19.484081] SET = 0, FnV = 0
[ 19.487149] EA = 0, S1PTW = 0
[ 19.490361] FSC = 0x04: level 0 translation fault
[ 19.495256] Data abort info:
[ 19.498149] ISV = 0, ISS = 0x00000004
[ 19.501997] CM = 0, WnR = 0
[ 19.504977] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000049f81000
[ 19.511432] [0000000000000048] pgd=0000000000000000,
p4d=0000000000000000
[ 19.518245] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 19.524520] Modules linked in: gpio_ir_recv(+) rc_core [last
unloaded: rc_core]
[ 19.531845] CPU: 0 PID: 445 Comm: insmod Not tainted
6.2.0-rc1-00028-g2c397a46d47c #72
[ 19.531854] Hardware name: FSL i.MX8MM EVK board (DT)
[ 19.531859] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS
BTYPE=--)
[ 19.551777] pc : cpu_latency_qos_remove_request+0x20/0x110
[ 19.557277] lr : gpio_ir_recv_runtime_suspend+0x18/0x30
[gpio_ir_recv]
[ 19.557294] sp : ffff800008ce3740
[ 19.557297] x29: ffff800008ce3740 x28: 0000000000000000 x27:
ffff800008ce3d50
[ 19.574270] x26: ffffc7e3e9cea100 x25: 00000000000f4240 x24:
ffffc7e3f9ef0e30
[ 19.574284] x23: 0000000000000000 x22: ffff0061803820f4 x21:
0000000000000008
[ 19.574296] x20: ffffc7e3fa75df30 x19: 0000000000000020 x18:
ffffffffffffffff
[ 19.588570] x17: 0000000000000000 x16: ffffc7e3f9efab70 x15:
ffffffffffffffff
[ 19.595712] x14: ffff800008ce37b8 x13: ffff800008ce37aa x12:
0000000000000001
[ 19.602853] x11: 0000000000000001 x10: ffffcbe3ec0dff87 x9 :
0000000000000008
[ 19.609991] x8 : 0101010101010101 x7 : 0000000000000000 x6 :
000000000f0bfe9f
[ 19.624261] x5 : 00ffffffffffffff x4 : 0025ab8e00000000 x3 :
ffff006180382010
[ 19.631405] x2 : ffffc7e3e9ce8030 x1 : ffffc7e3fc3eb810 x0 :
0000000000000020
[ 19.638548] Call trace:
[ 19.640995] cpu_latency_qos_remove_request+0x20/0x110
[ 19.646142] gpio_ir_recv_runtime_suspend+0x18/0x30 [gpio_ir_recv]
[ 19.652339] pm_generic_runtime_suspend+0x2c/0x44
[ 19.657055] __rpm_callback+0x48/0x1dc
[ 19.660807] rpm_callback+0x6c/0x80
[ 19.664301] rpm_suspend+0x10c/0x640
[ 19.667880] rpm_idle+0x250/0x2d0
[ 19.671198] update_autosuspend+0x38/0xe0
[ 19.675213] pm_runtime_set_autosuspend_delay+0x40/0x60
[ 19.680442] gpio_ir_recv_probe+0x1b4/0x21c [gpio_ir_recv]
[ 19.685941] platform_probe+0x68/0xc0
[ 19.689610] really_probe+0xc0/0x3dc
[ 19.693189] __driver_probe_device+0x7c/0x190
[ 19.697550] driver_probe_device+0x3c/0x110
[ 19.701739] __driver_attach+0xf4/0x200
[ 19.705578] bus_for_each_dev+0x70/0xd0
[ 19.709417] driver_attach+0x24/0x30
[ 19.712998] bus_add_driver+0x17c/0x240
[ 19.716834] driver_register+0x78/0x130
[ 19.720676] __platform_driver_register+0x28/0x34
[ 19.725386] gpio_ir_recv_driver_init+0x20/0x1000 [gpio_ir_recv]
[ 19.731404] do_one_initcall+0x44/0x2ac
[ 19.735243] do_init_module+0x48/0x1d0
[ 19.739003] load_module+0x19fc/0x2034
[ 19.742759] __do_sys_finit_module+0xac/0x12c
[ 19.747124] __arm64_sys_finit_module+0x20/0x30
[ 19.751664] invoke_syscall+0x48/0x114
[ 19.755420] el0_svc_common.constprop.0+0xcc/0xec
[ 19.760132] do_el0_svc+0x38/0xb0
[ 19.763456] el0_svc+0x2c/0x84
[ 19.766516] el0t_64_sync_handler+0xf4/0x120
[ 19.770789] el0t_64_sync+0x190/0x194
[ 19.774460] Code: 910003fd a90153f3 aa0003f3 91204021 (f9401400)
[ 19.780556] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: update s_journal_inum if it changes after journal replay
When mounting a crafted ext4 image, s_journal_inum may change after journal
replay, which is obviously unreasonable because we have successfully loaded
and replayed the journal through the old s_journal_inum. And the new
s_journal_inum bypasses some of the checks in ext4_get_journal(), which
may trigger a null pointer dereference problem. So if s_journal_inum
changes after the journal replay, we ignore the change, and rewrite the
current journal_inum to the superblock. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Check kzalloc() in lpfc_sli4_cgn_params_read()
If kzalloc() fails in lpfc_sli4_cgn_params_read(), then we rely on
lpfc_read_object()'s routine to NULL check pdata.
Currently, an early return error is thrown from lpfc_read_object() to
protect us from NULL ptr dereference, but the errno code is -ENODEV.
Change the errno code to a more appropriate -ENOMEM. |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: cx23885: check cx23885_vdev_init() return
cx23885_vdev_init() can return a NULL pointer, but that pointer
is used in the next line without a check.
Add a NULL pointer check and go to the error unwind if it is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb-v2: af9035: Fix null-ptr-deref in af9035_i2c_master_xfer
In af9035_i2c_master_xfer, msg is controlled by user. When msg[i].buf
is null and msg[i].len is zero, former checks on msg[i].buf would be
passed. Malicious data finally reach af9035_i2c_master_xfer. If accessing
msg[i].buf[0] without sanity check, null ptr deref would happen.
We add check on msg[i].len to prevent crash.
Similar commit:
commit 0ed554fd769a
("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix general protection fault in nilfs_btree_insert()
If nilfs2 reads a corrupted disk image and tries to reads a b-tree node
block by calling __nilfs_btree_get_block() against an invalid virtual
block address, it returns -ENOENT because conversion of the virtual block
address to a disk block address fails. However, this return value is the
same as the internal code that b-tree lookup routines return to indicate
that the block being searched does not exist, so functions that operate on
that b-tree may misbehave.
When nilfs_btree_insert() receives this spurious 'not found' code from
nilfs_btree_do_lookup(), it misunderstands that the 'not found' check was
successful and continues the insert operation using incomplete lookup path
data, causing the following crash:
general protection fault, probably for non-canonical address
0xdffffc0000000005: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
...
RIP: 0010:nilfs_btree_get_nonroot_node fs/nilfs2/btree.c:418 [inline]
RIP: 0010:nilfs_btree_prepare_insert fs/nilfs2/btree.c:1077 [inline]
RIP: 0010:nilfs_btree_insert+0x6d3/0x1c10 fs/nilfs2/btree.c:1238
Code: bc 24 80 00 00 00 4c 89 f8 48 c1 e8 03 42 80 3c 28 00 74 08 4c 89
ff e8 4b 02 92 fe 4d 8b 3f 49 83 c7 28 4c 89 f8 48 c1 e8 03 <42> 80 3c
28 00 74 08 4c 89 ff e8 2e 02 92 fe 4d 8b 3f 49 83 c7 02
...
Call Trace:
<TASK>
nilfs_bmap_do_insert fs/nilfs2/bmap.c:121 [inline]
nilfs_bmap_insert+0x20d/0x360 fs/nilfs2/bmap.c:147
nilfs_get_block+0x414/0x8d0 fs/nilfs2/inode.c:101
__block_write_begin_int+0x54c/0x1a80 fs/buffer.c:1991
__block_write_begin fs/buffer.c:2041 [inline]
block_write_begin+0x93/0x1e0 fs/buffer.c:2102
nilfs_write_begin+0x9c/0x110 fs/nilfs2/inode.c:261
generic_perform_write+0x2e4/0x5e0 mm/filemap.c:3772
__generic_file_write_iter+0x176/0x400 mm/filemap.c:3900
generic_file_write_iter+0xab/0x310 mm/filemap.c:3932
call_write_iter include/linux/fs.h:2186 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x7dc/0xc50 fs/read_write.c:584
ksys_write+0x177/0x2a0 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
...
</TASK>
This patch fixes the root cause of this problem by replacing the error
code that __nilfs_btree_get_block() returns on block address conversion
failure from -ENOENT to another internal code -EINVAL which means that the
b-tree metadata is corrupted.
By returning -EINVAL, it propagates without glitches, and for all relevant
b-tree operations, functions in the upper bmap layer output an error
message indicating corrupted b-tree metadata via
nilfs_bmap_convert_error(), and code -EIO will be eventually returned as
it should be. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_ncm: fix potential NULL ptr deref in ncm_bitrate()
In Google internal bug 265639009 we've received an (as yet) unreproducible
crash report from an aarch64 GKI 5.10.149-android13 running device.
AFAICT the source code is at:
https://android.googlesource.com/kernel/common/+/refs/tags/ASB-2022-12-05_13-5.10
The call stack is:
ncm_close() -> ncm_notify() -> ncm_do_notify()
with the crash at:
ncm_do_notify+0x98/0x270
Code: 79000d0b b9000a6c f940012a f9400269 (b9405d4b)
Which I believe disassembles to (I don't know ARM assembly, but it looks sane enough to me...):
// halfword (16-bit) store presumably to event->wLength (at offset 6 of struct usb_cdc_notification)
0B 0D 00 79 strh w11, [x8, #6]
// word (32-bit) store presumably to req->Length (at offset 8 of struct usb_request)
6C 0A 00 B9 str w12, [x19, #8]
// x10 (NULL) was read here from offset 0 of valid pointer x9
// IMHO we're reading 'cdev->gadget' and getting NULL
// gadget is indeed at offset 0 of struct usb_composite_dev
2A 01 40 F9 ldr x10, [x9]
// loading req->buf pointer, which is at offset 0 of struct usb_request
69 02 40 F9 ldr x9, [x19]
// x10 is null, crash, appears to be attempt to read cdev->gadget->max_speed
4B 5D 40 B9 ldr w11, [x10, #0x5c]
which seems to line up with ncm_do_notify() case NCM_NOTIFY_SPEED code fragment:
event->wLength = cpu_to_le16(8);
req->length = NCM_STATUS_BYTECOUNT;
/* SPEED_CHANGE data is up/down speeds in bits/sec */
data = req->buf + sizeof *event;
data[0] = cpu_to_le32(ncm_bitrate(cdev->gadget));
My analysis of registers and NULL ptr deref crash offset
(Unable to handle kernel NULL pointer dereference at virtual address 000000000000005c)
heavily suggests that the crash is due to 'cdev->gadget' being NULL when executing:
data[0] = cpu_to_le32(ncm_bitrate(cdev->gadget));
which calls:
ncm_bitrate(NULL)
which then calls:
gadget_is_superspeed(NULL)
which reads
((struct usb_gadget *)NULL)->max_speed
and hits a panic.
AFAICT, if I'm counting right, the offset of max_speed is indeed 0x5C.
(remember there's a GKI KABI reservation of 16 bytes in struct work_struct)
It's not at all clear to me how this is all supposed to work...
but returning 0 seems much better than panic-ing... |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: Add date->evt_skb is NULL check
fix crash because of null pointers
[ 6104.969662] BUG: kernel NULL pointer dereference, address: 00000000000000c8
[ 6104.969667] #PF: supervisor read access in kernel mode
[ 6104.969668] #PF: error_code(0x0000) - not-present page
[ 6104.969670] PGD 0 P4D 0
[ 6104.969673] Oops: 0000 [#1] SMP NOPTI
[ 6104.969684] RIP: 0010:btusb_mtk_hci_wmt_sync+0x144/0x220 [btusb]
[ 6104.969688] RSP: 0018:ffffb8d681533d48 EFLAGS: 00010246
[ 6104.969689] RAX: 0000000000000000 RBX: ffff8ad560bb2000 RCX: 0000000000000006
[ 6104.969691] RDX: 0000000000000000 RSI: ffffb8d681533d08 RDI: 0000000000000000
[ 6104.969692] RBP: ffffb8d681533d70 R08: 0000000000000001 R09: 0000000000000001
[ 6104.969694] R10: 0000000000000001 R11: 00000000fa83b2da R12: ffff8ad461d1d7c0
[ 6104.969695] R13: 0000000000000000 R14: ffff8ad459618c18 R15: ffffb8d681533d90
[ 6104.969697] FS: 00007f5a1cab9d40(0000) GS:ffff8ad578200000(0000) knlGS:00000
[ 6104.969699] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 6104.969700] CR2: 00000000000000c8 CR3: 000000018620c001 CR4: 0000000000760ef0
[ 6104.969701] PKRU: 55555554
[ 6104.969702] Call Trace:
[ 6104.969708] btusb_mtk_shutdown+0x44/0x80 [btusb]
[ 6104.969732] hci_dev_do_close+0x470/0x5c0 [bluetooth]
[ 6104.969748] hci_rfkill_set_block+0x56/0xa0 [bluetooth]
[ 6104.969753] rfkill_set_block+0x92/0x160
[ 6104.969755] rfkill_fop_write+0x136/0x1e0
[ 6104.969759] __vfs_write+0x18/0x40
[ 6104.969761] vfs_write+0xdf/0x1c0
[ 6104.969763] ksys_write+0xb1/0xe0
[ 6104.969765] __x64_sys_write+0x1a/0x20
[ 6104.969769] do_syscall_64+0x51/0x180
[ 6104.969771] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 6104.969773] RIP: 0033:0x7f5a21f18fef
[ 6104.9] RSP: 002b:00007ffeefe39010 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
[ 6104.969780] RAX: ffffffffffffffda RBX: 000055c10a7560a0 RCX: 00007f5a21f18fef
[ 6104.969781] RDX: 0000000000000008 RSI: 00007ffeefe39060 RDI: 0000000000000012
[ 6104.969782] RBP: 00007ffeefe39060 R08: 0000000000000000 R09: 0000000000000017
[ 6104.969784] R10: 00007ffeefe38d97 R11: 0000000000000293 R12: 0000000000000002
[ 6104.969785] R13: 00007ffeefe39220 R14: 00007ffeefe391a0 R15: 000055c10a72acf0 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panel/panel-tpo-tpg110: fix a possible null pointer dereference
In tpg110_get_modes(), the return value of drm_mode_duplicate() is
assigned to mode, which will lead to a NULL pointer dereference on
failure of drm_mode_duplicate(). Add a check to avoid npd. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panel: fix a possible null pointer dereference
In versatile_panel_get_modes(), the return value of drm_mode_duplicate()
is assigned to mode, which will lead to a NULL pointer dereference
on failure of drm_mode_duplicate(). Add a check to avoid npd. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ibmvfc: Remove BUG_ON in the case of an empty event pool
In practice the driver should never send more commands than are allocated
to a queue's event pool. In the unlikely event that this happens, the code
asserts a BUG_ON, and in the case that the kernel is not configured to
crash on panic returns a junk event pointer from the empty event list
causing things to spiral from there. This BUG_ON is a historical artifact
of the ibmvfc driver first being upstreamed, and it is well known now that
the use of BUG_ON is bad practice except in the most unrecoverable
scenario. There is nothing about this scenario that prevents the driver
from recovering and carrying on.
Remove the BUG_ON in question from ibmvfc_get_event() and return a NULL
pointer in the case of an empty event pool. Update all call sites to
ibmvfc_get_event() to check for a NULL pointer and perfrom the appropriate
failure or recovery action. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: libfc: Fix potential NULL pointer dereference in fc_lport_ptp_setup()
fc_lport_ptp_setup() did not check the return value of fc_rport_create()
which can return NULL and would cause a NULL pointer dereference. Address
this issue by checking return value of fc_rport_create() and log error
message on fc_rport_create() failed. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix possible null-ptr-deref when assigning a stream
While AudioDSP drivers assign streams exclusively of HOST or LINK type,
nothing blocks a user to attempt to assign a COUPLED stream. As
supplied substream instance may be a stub, what is the case when
code-loading, such scenario ends with null-ptr-deref. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: vcc: Add check for kstrdup() in vcc_probe()
Add check for the return value of kstrdup() and return the error, if it
fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Do not unset preset when cleaning up codec
Several functions that take part in codec's initialization and removal
are re-used by ASoC codec drivers implementations. Drivers mimic the
behavior of hda_codec_driver_probe/remove() found in
sound/pci/hda/hda_bind.c with their component->probe/remove() instead.
One of the reasons for that is the expectation of
snd_hda_codec_device_new() to receive a valid pointer to an instance of
struct snd_card. This expectation can be met only once sound card
components probing commences.
As ASoC sound card may be unbound without codec device being actually
removed from the system, unsetting ->preset in
snd_hda_codec_cleanup_for_unbind() interferes with module unload -> load
scenario causing null-ptr-deref. Preset is assigned only once, during
device/driver matching whereas ASoC codec driver's module reloading may
occur several times throughout the lifetime of an audio stack. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: hub: Guard against accesses to uninitialized BOS descriptors
Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h
access fields inside udev->bos without checking if it was allocated and
initialized. If usb_get_bos_descriptor() fails for whatever
reason, udev->bos will be NULL and those accesses will result in a
crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1 <HASH:1f9e 1>
Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021
Workqueue: usb_hub_wq hub_event
RIP: 0010:hub_port_reset+0x193/0x788
Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 <48> 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9
RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310
RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840
RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 000000022e80c005 CR4: 00000000003706e0
Call Trace:
hub_event+0x73f/0x156e
? hub_activate+0x5b7/0x68f
process_one_work+0x1a2/0x487
worker_thread+0x11a/0x288
kthread+0x13a/0x152
? process_one_work+0x487/0x487
? kthread_associate_blkcg+0x70/0x70
ret_from_fork+0x1f/0x30
Fall back to a default behavior if the BOS descriptor isn't accessible
and skip all the functionalities that depend on it: LPM support checks,
Super Speed capabilitiy checks, U1/U2 states setup. |