| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix memory and information leak in smb3_reconfigure()
In smb3_reconfigure(), if smb3_sync_session_ctx_passwords() fails, the
function returns immediately without freeing and erasing the newly
allocated new_password and new_password2. This causes both a memory leak
and a potential information leak.
Fix this by calling kfree_sensitive() on both password buffers before
returning in this error case. |
| Open WebUI load_tool_module_by_id Command Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Open WebUI. Authentication is required to exploit this vulnerability.
The specific flaw exists within the load_tool_module_by_id function. The issue results from the lack of proper validation of a user-supplied string before using it to execute Python code. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-28257. |
| Langflow exec_globals Inclusion of Functionality from Untrusted Control Sphere Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Langflow. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of the exec_globals parameter provided to the validate endpoint. The issue results from the inclusion of a resource from an untrusted control sphere. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27325. |
| Dell ECS, versions 3.8.1.0 through 3.8.1.7, and Dell ObjectScale versions prior to 4.2.0.0, contains a Cleartext Transmission of Sensitive Information vulnerability. An unauthenticated attacker with remote access could potentially exploit this vulnerability, leading to information exposure. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/poll: correctly handle io_poll_add() return value on update
When the core of io_uring was updated to handle completions
consistently and with fixed return codes, the POLL_REMOVE opcode
with updates got slightly broken. If a POLL_ADD is pending and
then POLL_REMOVE is used to update the events of that request, if that
update causes the POLL_ADD to now trigger, then that completion is lost
and a CQE is never posted.
Additionally, ensure that if an update does cause an existing POLL_ADD
to complete, that the completion value isn't always overwritten with
-ECANCELED. For that case, whatever io_poll_add() set the value to
should just be retained. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: rtl8150: fix memory leak on usb_submit_urb() failure
In async_set_registers(), when usb_submit_urb() fails, the allocated
async_req structure and URB are not freed, causing a memory leak.
The completion callback async_set_reg_cb() is responsible for freeing
these allocations, but it is only called after the URB is successfully
submitted and completes (successfully or with error). If submission
fails, the callback never runs and the memory is leaked.
Fix this by freeing both the URB and the request structure in the error
path when usb_submit_urb() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: always drop device refcount in ib_del_sub_device_and_put()
Since nldev_deldev() (introduced by commit 060c642b2ab8 ("RDMA/nldev: Add
support to add/delete a sub IB device through netlink") grabs a reference
using ib_device_get_by_index() before calling ib_del_sub_device_and_put(),
we need to drop that reference before returning -EOPNOTSUPP error. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free warning in btrfs_get_or_create_delayed_node()
Previously, btrfs_get_or_create_delayed_node() set the delayed_node's
refcount before acquiring the root->delayed_nodes lock.
Commit e8513c012de7 ("btrfs: implement ref_tracker for delayed_nodes")
moved refcount_set inside the critical section, which means there is
no longer a memory barrier between setting the refcount and setting
btrfs_inode->delayed_node.
Without that barrier, the stores to node->refs and
btrfs_inode->delayed_node may become visible out of order. Another
thread can then read btrfs_inode->delayed_node and attempt to
increment a refcount that hasn't been set yet, leading to a
refcounting bug and a use-after-free warning.
The fix is to move refcount_set back to where it was to take
advantage of the implicit memory barrier provided by lock
acquisition.
Because the allocations now happen outside of the lock's critical
section, they can use GFP_NOFS instead of GFP_ATOMIC. |
| Missing Authorization vulnerability in Raptive Raptive Ads adthrive-ads allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Raptive Ads: from n/a through <= 3.10.0. |
| Missing Authorization vulnerability in zohocrm Zoho CRM Lead Magnet zoho-crm-forms allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Zoho CRM Lead Magnet: from n/a through <= 1.8.1.5. |
| Authorization Bypass Through User-Controlled Key vulnerability in Mikado-Themes Rosebud rosebud allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Rosebud: from n/a through <= 1.4. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in jagdish1o1 Delay Redirects delay-redirects allows DOM-Based XSS.This issue affects Delay Redirects: from n/a through <= 1.0.0. |
| In the Linux kernel, the following vulnerability has been resolved:
dm-verity: disable recursive forward error correction
There are two problems with the recursive correction:
1. It may cause denial-of-service. In fec_read_bufs, there is a loop that
has 253 iterations. For each iteration, we may call verity_hash_for_block
recursively. There is a limit of 4 nested recursions - that means that
there may be at most 253^4 (4 billion) iterations. Red Hat QE team
actually created an image that pushes dm-verity to this limit - and this
image just makes the udev-worker process get stuck in the 'D' state.
2. It doesn't work. In fec_read_bufs we store data into the variable
"fio->bufs", but fio bufs is shared between recursive invocations, if
"verity_hash_for_block" invoked correction recursively, it would
overwrite partially filled fio->bufs. |
| Improper Restriction of Excessive Authentication Attempts, Weak Password Recovery Mechanism for Forgotten Password vulnerability in Birebirsoft Software and Technology Solutions Sufirmam allows Brute Force, Password Recovery Exploitation.This issue affects Sufirmam: through 23012026. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. |
| An issue was discovered in Free5gc NRF 1.4.0. In the access-token generation logic of free5GC, the AccessTokenScopeCheck() function in file internal/sbi/processor/access_token.go bypasses all scope validation when the attacker uses a crafted targetNF value. This allows attackers to obtain an access token with any arbitrary scope. |
| Null pointer dereference in free5gc pcf 1.4.0 in file internal/sbi/processor/ampolicy.go in function HandleDeletePoliciesPolAssoId. |
| Missing Authorization vulnerability in Hyyan Abo Fakher Hyyan WooCommerce Polylang Integration woo-poly-integration allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Hyyan WooCommerce Polylang Integration: from n/a through <= 1.5.0. |
| Incorrect access control in the authRoutes function of SpringBlade v4.5.0 allows attackers with low-level privileges to escalate privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix crash on profile change rollback failure
mlx5e_netdev_change_profile can fail to attach a new profile and can
fail to rollback to old profile, in such case, we could end up with a
dangling netdev with a fully reset netdev_priv. A retry to change
profile, e.g. another attempt to call mlx5e_netdev_change_profile via
switchdev mode change, will crash trying to access the now NULL
priv->mdev.
This fix allows mlx5e_netdev_change_profile() to handle previous
failures and an empty priv, by not assuming priv is valid.
Pass netdev and mdev to all flows requiring
mlx5e_netdev_change_profile() and avoid passing priv.
In mlx5e_netdev_change_profile() check if current priv is valid, and if
not, just attach the new profile without trying to access the old one.
This fixes the following oops, when enabling switchdev mode for the 2nd
time after first time failure:
## Enabling switchdev mode first time:
mlx5_core 0012:03:00.1: E-Switch: Supported tc chains and prios offload
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12
^^^^^^^^
mlx5_core 0000:00:03.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0)
## retry: Enabling switchdev mode 2nd time:
mlx5_core 0000:00:03.0: E-Switch: Supported tc chains and prios offload
BUG: kernel NULL pointer dereference, address: 0000000000000038
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 13 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc4+ #91 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:mlx5e_detach_netdev+0x3c/0x90
Code: 50 00 00 f0 80 4f 78 02 48 8b bf e8 07 00 00 48 85 ff 74 16 48 8b 73 78 48 d1 ee 83 e6 01 83 f6 01 40 0f b6 f6 e8 c4 42 00 00 <48> 8b 45 38 48 85 c0 74 08 48 89 df e8 cc 47 40 1e 48 8b bb f0 07
RSP: 0018:ffffc90000673890 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8881036a89c0 RCX: 0000000000000000
RDX: ffff888113f63800 RSI: ffffffff822fe720 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000002dcd R09: 0000000000000000
R10: ffffc900006738e8 R11: 00000000ffffffff R12: 0000000000000000
R13: 0000000000000000 R14: ffff8881036a89c0 R15: 0000000000000000
FS: 00007fdfb8384740(0000) GS:ffff88856a9d6000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000038 CR3: 0000000112ae0005 CR4: 0000000000370ef0
Call Trace:
<TASK>
mlx5e_netdev_change_profile+0x45/0xb0
mlx5e_vport_rep_load+0x27b/0x2d0
mlx5_esw_offloads_rep_load+0x72/0xf0
esw_offloads_enable+0x5d0/0x970
mlx5_eswitch_enable_locked+0x349/0x430
? is_mp_supported+0x57/0xb0
mlx5_devlink_eswitch_mode_set+0x26b/0x430
devlink_nl_eswitch_set_doit+0x6f/0xf0
genl_family_rcv_msg_doit+0xe8/0x140
genl_rcv_msg+0x18b/0x290
? __pfx_devlink_nl_pre_doit+0x10/0x10
? __pfx_devlink_nl_eswitch_set_doit+0x10/0x10
? __pfx_devlink_nl_post_doit+0x10/0x10
? __pfx_genl_rcv_msg+0x10/0x10
netlink_rcv_skb+0x52/0x100
genl_rcv+0x28/0x40
netlink_unicast+0x282/0x3e0
? __alloc_skb+0xd6/0x190
netlink_sendmsg+0x1f7/0x430
__sys_sendto+0x213/0x220
? __sys_recvmsg+0x6a/0xd0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x50/0x1f0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fdfb8495047 |
| In the Linux kernel, the following vulnerability has been resolved:
dst: fix races in rt6_uncached_list_del() and rt_del_uncached_list()
syzbot was able to crash the kernel in rt6_uncached_list_flush_dev()
in an interesting way [1]
Crash happens in list_del_init()/INIT_LIST_HEAD() while writing
list->prev, while the prior write on list->next went well.
static inline void INIT_LIST_HEAD(struct list_head *list)
{
WRITE_ONCE(list->next, list); // This went well
WRITE_ONCE(list->prev, list); // Crash, @list has been freed.
}
Issue here is that rt6_uncached_list_del() did not attempt to lock
ul->lock, as list_empty(&rt->dst.rt_uncached) returned
true because the WRITE_ONCE(list->next, list) happened on the other CPU.
We might use list_del_init_careful() and list_empty_careful(),
or make sure rt6_uncached_list_del() always grabs the spinlock
whenever rt->dst.rt_uncached_list has been set.
A similar fix is neeed for IPv4.
[1]
BUG: KASAN: slab-use-after-free in INIT_LIST_HEAD include/linux/list.h:46 [inline]
BUG: KASAN: slab-use-after-free in list_del_init include/linux/list.h:296 [inline]
BUG: KASAN: slab-use-after-free in rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline]
BUG: KASAN: slab-use-after-free in rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020
Write of size 8 at addr ffff8880294cfa78 by task kworker/u8:14/3450
CPU: 0 UID: 0 PID: 3450 Comm: kworker/u8:14 Tainted: G L syzkaller #0 PREEMPT_{RT,(full)}
Tainted: [L]=SOFTLOCKUP
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
Workqueue: netns cleanup_net
Call Trace:
<TASK>
dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
INIT_LIST_HEAD include/linux/list.h:46 [inline]
list_del_init include/linux/list.h:296 [inline]
rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline]
rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020
addrconf_ifdown+0x143/0x18a0 net/ipv6/addrconf.c:3853
addrconf_notify+0x1bc/0x1050 net/ipv6/addrconf.c:-1
notifier_call_chain+0x19d/0x3a0 kernel/notifier.c:85
call_netdevice_notifiers_extack net/core/dev.c:2268 [inline]
call_netdevice_notifiers net/core/dev.c:2282 [inline]
netif_close_many+0x29c/0x410 net/core/dev.c:1785
unregister_netdevice_many_notify+0xb50/0x2330 net/core/dev.c:12353
ops_exit_rtnl_list net/core/net_namespace.c:187 [inline]
ops_undo_list+0x3dc/0x990 net/core/net_namespace.c:248
cleanup_net+0x4de/0x7b0 net/core/net_namespace.c:696
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421
kthread+0x711/0x8a0 kernel/kthread.c:463
ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
</TASK>
Allocated by task 803:
kasan_save_stack mm/kasan/common.c:57 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:78
unpoison_slab_object mm/kasan/common.c:340 [inline]
__kasan_slab_alloc+0x6c/0x80 mm/kasan/common.c:366
kasan_slab_alloc include/linux/kasan.h:253 [inline]
slab_post_alloc_hook mm/slub.c:4953 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
kmem_cache_alloc_noprof+0x18d/0x6c0 mm/slub.c:5270
dst_alloc+0x105/0x170 net/core/dst.c:89
ip6_dst_alloc net/ipv6/route.c:342 [inline]
icmp6_dst_alloc+0x75/0x460 net/ipv6/route.c:3333
mld_sendpack+0x683/0xe60 net/ipv6/mcast.c:1844
mld_send_cr net/ipv6/mcast.c:2154 [inline]
mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421
kthread+0x711/0x8a0 kernel/kthread.c:463
ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr
---truncated--- |