| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
posix-timers: Plug potential memory leak in do_timer_create()
When posix timer creation is set to allocate a given timer ID and the
access to the user space value faults, the function terminates without
freeing the already allocated posix timer structure.
Move the allocation after the user space access to cure that.
[ tglx: Massaged change log ] |
| In the Linux kernel, the following vulnerability has been resolved:
net: netpoll: fix incorrect refcount handling causing incorrect cleanup
commit efa95b01da18 ("netpoll: fix use after free") incorrectly
ignored the refcount and prematurely set dev->npinfo to NULL during
netpoll cleanup, leading to improper behavior and memory leaks.
Scenario causing lack of proper cleanup:
1) A netpoll is associated with a NIC (e.g., eth0) and netdev->npinfo is
allocated, and refcnt = 1
- Keep in mind that npinfo is shared among all netpoll instances. In
this case, there is just one.
2) Another netpoll is also associated with the same NIC and
npinfo->refcnt += 1.
- Now dev->npinfo->refcnt = 2;
- There is just one npinfo associated to the netdev.
3) When the first netpolls goes to clean up:
- The first cleanup succeeds and clears np->dev->npinfo, ignoring
refcnt.
- It basically calls `RCU_INIT_POINTER(np->dev->npinfo, NULL);`
- Set dev->npinfo = NULL, without proper cleanup
- No ->ndo_netpoll_cleanup() is either called
4) Now the second target tries to clean up
- The second cleanup fails because np->dev->npinfo is already NULL.
* In this case, ops->ndo_netpoll_cleanup() was never called, and
the skb pool is not cleaned as well (for the second netpoll
instance)
- This leaks npinfo and skbpool skbs, which is clearly reported by
kmemleak.
Revert commit efa95b01da18 ("netpoll: fix use after free") and adds
clarifying comments emphasizing that npinfo cleanup should only happen
once the refcount reaches zero, ensuring stable and correct netpoll
behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Avoid lock inversion when pinning to GGTT on CHV/BXT+VTD
On completion of i915_vma_pin_ww(), a synchronous variant of
dma_fence_work_commit() is called. When pinning a VMA to GGTT address
space on a Cherry View family processor, or on a Broxton generation SoC
with VTD enabled, i.e., when stop_machine() is then called from
intel_ggtt_bind_vma(), that can potentially lead to lock inversion among
reservation_ww and cpu_hotplug locks.
[86.861179] ======================================================
[86.861193] WARNING: possible circular locking dependency detected
[86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 Tainted: G U
[86.861226] ------------------------------------------------------
[86.861238] i915_module_loa/1432 is trying to acquire lock:
[86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50
[86.861290]
but task is already holding lock:
[86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915]
[86.862233]
which lock already depends on the new lock.
[86.862251]
the existing dependency chain (in reverse order) is:
[86.862265]
-> #5 (reservation_ww_class_mutex){+.+.}-{3:3}:
[86.862292] dma_resv_lockdep+0x19a/0x390
[86.862315] do_one_initcall+0x60/0x3f0
[86.862334] kernel_init_freeable+0x3cd/0x680
[86.862353] kernel_init+0x1b/0x200
[86.862369] ret_from_fork+0x47/0x70
[86.862383] ret_from_fork_asm+0x1a/0x30
[86.862399]
-> #4 (reservation_ww_class_acquire){+.+.}-{0:0}:
[86.862425] dma_resv_lockdep+0x178/0x390
[86.862440] do_one_initcall+0x60/0x3f0
[86.862454] kernel_init_freeable+0x3cd/0x680
[86.862470] kernel_init+0x1b/0x200
[86.862482] ret_from_fork+0x47/0x70
[86.862495] ret_from_fork_asm+0x1a/0x30
[86.862509]
-> #3 (&mm->mmap_lock){++++}-{3:3}:
[86.862531] down_read_killable+0x46/0x1e0
[86.862546] lock_mm_and_find_vma+0xa2/0x280
[86.862561] do_user_addr_fault+0x266/0x8e0
[86.862578] exc_page_fault+0x8a/0x2f0
[86.862593] asm_exc_page_fault+0x27/0x30
[86.862607] filldir64+0xeb/0x180
[86.862620] kernfs_fop_readdir+0x118/0x480
[86.862635] iterate_dir+0xcf/0x2b0
[86.862648] __x64_sys_getdents64+0x84/0x140
[86.862661] x64_sys_call+0x1058/0x2660
[86.862675] do_syscall_64+0x91/0xe90
[86.862689] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[86.862703]
-> #2 (&root->kernfs_rwsem){++++}-{3:3}:
[86.862725] down_write+0x3e/0xf0
[86.862738] kernfs_add_one+0x30/0x3c0
[86.862751] kernfs_create_dir_ns+0x53/0xb0
[86.862765] internal_create_group+0x134/0x4c0
[86.862779] sysfs_create_group+0x13/0x20
[86.862792] topology_add_dev+0x1d/0x30
[86.862806] cpuhp_invoke_callback+0x4b5/0x850
[86.862822] cpuhp_issue_call+0xbf/0x1f0
[86.862836] __cpuhp_setup_state_cpuslocked+0x111/0x320
[86.862852] __cpuhp_setup_state+0xb0/0x220
[86.862866] topology_sysfs_init+0x30/0x50
[86.862879] do_one_initcall+0x60/0x3f0
[86.862893] kernel_init_freeable+0x3cd/0x680
[86.862908] kernel_init+0x1b/0x200
[86.862921] ret_from_fork+0x47/0x70
[86.862934] ret_from_fork_asm+0x1a/0x30
[86.862947]
-> #1 (cpuhp_state_mutex){+.+.}-{3:3}:
[86.862969] __mutex_lock+0xaa/0xed0
[86.862982] mutex_lock_nested+0x1b/0x30
[86.862995] __cpuhp_setup_state_cpuslocked+0x67/0x320
[86.863012] __cpuhp_setup_state+0xb0/0x220
[86.863026] page_alloc_init_cpuhp+0x2d/0x60
[86.863041] mm_core_init+0x22/0x2d0
[86.863054] start_kernel+0x576/0xbd0
[86.863068] x86_64_start_reservations+0x18/0x30
[86.863084] x86_64_start_kernel+0xbf/0x110
[86.863098] common_startup_64+0x13e/0x141
[86.863114]
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
[86.863135] __lock_acquire+0x16
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Check the TLS certificate fields in nfs_match_client()
If the TLS security policy is of type RPC_XPRTSEC_TLS_X509, then the
cert_serial and privkey_serial fields need to match as well since they
define the client's identity, as presented to the server. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix LTP test failures when timestamps are delegated
The utimes01 and utime06 tests fail when delegated timestamps are
enabled, specifically in subtests that modify the atime and mtime
fields using the 'nobody' user ID.
The problem can be reproduced as follow:
# echo "/media *(rw,no_root_squash,sync)" >> /etc/exports
# export -ra
# mount -o rw,nfsvers=4.2 127.0.0.1:/media /tmpdir
# cd /opt/ltp
# ./runltp -d /tmpdir -s utimes01
# ./runltp -d /tmpdir -s utime06
This issue occurs because nfs_setattr does not verify the inode's
UID against the caller's fsuid when delegated timestamps are
permitted for the inode.
This patch adds the UID check and if it does not match then the
request is sent to the server for permission checking. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: route: Prevent rt_bind_exception() from rebinding stale fnhe
The sit driver's packet transmission path calls: sit_tunnel_xmit() ->
update_or_create_fnhe(), which lead to fnhe_remove_oldest() being called
to delete entries exceeding FNHE_RECLAIM_DEPTH+random.
The race window is between fnhe_remove_oldest() selecting fnheX for
deletion and the subsequent kfree_rcu(). During this time, the
concurrent path's __mkroute_output() -> find_exception() can fetch the
soon-to-be-deleted fnheX, and rt_bind_exception() then binds it with a
new dst using a dst_hold(). When the original fnheX is freed via RCU,
the dst reference remains permanently leaked.
CPU 0 CPU 1
__mkroute_output()
find_exception() [fnheX]
update_or_create_fnhe()
fnhe_remove_oldest() [fnheX]
rt_bind_exception() [bind dst]
RCU callback [fnheX freed, dst leak]
This issue manifests as a device reference count leak and a warning in
dmesg when unregistering the net device:
unregister_netdevice: waiting for sitX to become free. Usage count = N
Ido Schimmel provided the simple test validation method [1].
The fix clears 'oldest->fnhe_daddr' before calling fnhe_flush_routes().
Since rt_bind_exception() checks this field, setting it to zero prevents
the stale fnhe from being reused and bound to a new dst just before it
is freed.
[1]
ip netns add ns1
ip -n ns1 link set dev lo up
ip -n ns1 address add 192.0.2.1/32 dev lo
ip -n ns1 link add name dummy1 up type dummy
ip -n ns1 route add 192.0.2.2/32 dev dummy1
ip -n ns1 link add name gretap1 up arp off type gretap \
local 192.0.2.1 remote 192.0.2.2
ip -n ns1 route add 198.51.0.0/16 dev gretap1
taskset -c 0 ip netns exec ns1 mausezahn gretap1 \
-A 198.51.100.1 -B 198.51.0.0/16 -t udp -p 1000 -c 0 -q &
taskset -c 2 ip netns exec ns1 mausezahn gretap1 \
-A 198.51.100.1 -B 198.51.0.0/16 -t udp -p 1000 -c 0 -q &
sleep 10
ip netns pids ns1 | xargs kill
ip netns del ns1 |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: avoid having an active sc_timer before freeing sci
Because kthread_stop did not stop sc_task properly and returned -EINTR,
the sc_timer was not properly closed, ultimately causing the problem [1]
reported by syzbot when freeing sci due to the sc_timer not being closed.
Because the thread sc_task main function nilfs_segctor_thread() returns 0
when it succeeds, when the return value of kthread_stop() is not 0 in
nilfs_segctor_destroy(), we believe that it has not properly closed
sc_timer.
We use timer_shutdown_sync() to sync wait for sc_timer to shutdown, and
set the value of sc_task to NULL under the protection of lock
sc_state_lock, so as to avoid the issue caused by sc_timer not being
properly shutdowned.
[1]
ODEBUG: free active (active state 0) object: 00000000dacb411a object type: timer_list hint: nilfs_construction_timeout
Call trace:
nilfs_segctor_destroy fs/nilfs2/segment.c:2811 [inline]
nilfs_detach_log_writer+0x668/0x8cc fs/nilfs2/segment.c:2877
nilfs_put_super+0x4c/0x12c fs/nilfs2/super.c:509 |
| In the Linux kernel, the following vulnerability has been resolved:
binfmt_misc: restore write access before closing files opened by open_exec()
bm_register_write() opens an executable file using open_exec(), which
internally calls do_open_execat() and denies write access on the file to
avoid modification while it is being executed.
However, when an error occurs, bm_register_write() closes the file using
filp_close() directly. This does not restore the write permission, which
may cause subsequent write operations on the same file to fail.
Fix this by calling exe_file_allow_write_access() before filp_close() to
restore the write permission properly. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: rawnand: cadence: fix DMA device NULL pointer dereference
The DMA device pointer `dma_dev` was being dereferenced before ensuring
that `cdns_ctrl->dmac` is properly initialized.
Move the assignment of `dma_dev` after successfully acquiring the DMA
channel to ensure the pointer is valid before use. |
| In the Linux kernel, the following vulnerability has been resolved:
mtdchar: fix integer overflow in read/write ioctls
The "req.start" and "req.len" variables are u64 values that come from the
user at the start of the function. We mask away the high 32 bits of
"req.len" so that's capped at U32_MAX but the "req.start" variable can go
up to U64_MAX which means that the addition can still integer overflow.
Use check_add_overflow() to fix this bug. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/firmware: Add missing kfree() of nvkm_falcon_fw::boot
nvkm_falcon_fw::boot is allocated, but no one frees it. This causes a
kmemleak warning.
Make sure this data is deallocated. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/cmd_net: fix wrong argument types for skb_queue_splice()
If timestamp retriving needs to be retried and the local list of
SKB's already has entries, then it's spliced back into the socket
queue. However, the arguments for the splice helper are transposed,
causing exactly the wrong direction of splicing into the on-stack
list. Fix that up. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: Add call to put_pid()
Add a call to put_pid() corresponding to get_task_pid().
host1x_memory_context_alloc() does not take ownership of the PID so we
need to free it here to avoid leaking.
[mperttunen@nvidia.com: reword commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
veth: more robust handing of race to avoid txq getting stuck
Commit dc82a33297fc ("veth: apply qdisc backpressure on full ptr_ring to
reduce TX drops") introduced a race condition that can lead to a permanently
stalled TXQ. This was observed in production on ARM64 systems (Ampere Altra
Max).
The race occurs in veth_xmit(). The producer observes a full ptr_ring and
stops the queue (netif_tx_stop_queue()). The subsequent conditional logic,
intended to re-wake the queue if the consumer had just emptied it (if
(__ptr_ring_empty(...)) netif_tx_wake_queue()), can fail. This leads to a
"lost wakeup" where the TXQ remains stopped (QUEUE_STATE_DRV_XOFF) and
traffic halts.
This failure is caused by an incorrect use of the __ptr_ring_empty() API
from the producer side. As noted in kernel comments, this check is not
guaranteed to be correct if a consumer is operating on another CPU. The
empty test is based on ptr_ring->consumer_head, making it reliable only for
the consumer. Using this check from the producer side is fundamentally racy.
This patch fixes the race by adopting the more robust logic from an earlier
version V4 of the patchset, which always flushed the peer:
(1) In veth_xmit(), the racy conditional wake-up logic and its memory barrier
are removed. Instead, after stopping the queue, we unconditionally call
__veth_xdp_flush(rq). This guarantees that the NAPI consumer is scheduled,
making it solely responsible for re-waking the TXQ.
This handles the race where veth_poll() consumes all packets and completes
NAPI *before* veth_xmit() on the producer side has called netif_tx_stop_queue.
The __veth_xdp_flush(rq) will observe rx_notify_masked is false and schedule
NAPI.
(2) On the consumer side, the logic for waking the peer TXQ is moved out of
veth_xdp_rcv() and placed at the end of the veth_poll() function. This
placement is part of fixing the race, as the netif_tx_queue_stopped() check
must occur after rx_notify_masked is potentially set to false during NAPI
completion.
This handles the race where veth_poll() consumes all packets, but haven't
finished (rx_notify_masked is still true). The producer veth_xmit() stops the
TXQ and __veth_xdp_flush(rq) will observe rx_notify_masked is true, meaning
not starting NAPI. Then veth_poll() change rx_notify_masked to false and
stops NAPI. Before exiting veth_poll() will observe TXQ is stopped and wake
it up. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempool: fix poisoning order>0 pages with HIGHMEM
The kernel test has reported:
BUG: unable to handle page fault for address: fffba000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 03171067 *pte = 00000000
Oops: Oops: 0002 [#1]
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17)
Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56
EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b
ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287
CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690
Call Trace:
poison_element (mm/mempool.c:83 mm/mempool.c:102)
mempool_init_node (mm/mempool.c:142 mm/mempool.c:226)
mempool_init_noprof (mm/mempool.c:250 (discriminator 1))
? mempool_alloc_pages (mm/mempool.c:640)
bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8))
? mempool_alloc_pages (mm/mempool.c:640)
do_one_initcall (init/main.c:1283)
Christoph found out this is due to the poisoning code not dealing
properly with CONFIG_HIGHMEM because only the first page is mapped but
then the whole potentially high-order page is accessed.
We could give up on HIGHMEM here, but it's straightforward to fix this
with a loop that's mapping, poisoning or checking and unmapping
individual pages. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: Fix proto fallback detection with BPF
The sockmap feature allows bpf syscall from userspace, or based
on bpf sockops, replacing the sk_prot of sockets during protocol stack
processing with sockmap's custom read/write interfaces.
'''
tcp_rcv_state_process()
syn_recv_sock()/subflow_syn_recv_sock()
tcp_init_transfer(BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB)
bpf_skops_established <== sockops
bpf_sock_map_update(sk) <== call bpf helper
tcp_bpf_update_proto() <== update sk_prot
'''
When the server has MPTCP enabled but the client sends a TCP SYN
without MPTCP, subflow_syn_recv_sock() performs a fallback on the
subflow, replacing the subflow sk's sk_prot with the native sk_prot.
'''
subflow_syn_recv_sock()
subflow_ulp_fallback()
subflow_drop_ctx()
mptcp_subflow_ops_undo_override()
'''
Then, this subflow can be normally used by sockmap, which replaces the
native sk_prot with sockmap's custom sk_prot. The issue occurs when the
user executes accept::mptcp_stream_accept::mptcp_fallback_tcp_ops().
Here, it uses sk->sk_prot to compare with the native sk_prot, but this
is incorrect when sockmap is used, as we may incorrectly set
sk->sk_socket->ops.
This fix uses the more generic sk_family for the comparison instead.
Additionally, this also prevents a WARNING from occurring:
result from ./scripts/decode_stacktrace.sh:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 337 at net/mptcp/protocol.c:68 mptcp_stream_accept \
(net/mptcp/protocol.c:4005)
Modules linked in:
...
PKRU: 55555554
Call Trace:
<TASK>
do_accept (net/socket.c:1989)
__sys_accept4 (net/socket.c:2028 net/socket.c:2057)
__x64_sys_accept (net/socket.c:2067)
x64_sys_call (arch/x86/entry/syscall_64.c:41)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 arch/x86/entry/syscall_64.c:94)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f87ac92b83d
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix incomplete backport in cfids_invalidation_worker()
The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in
smb2_close_cached_fid()") was an incomplete backport and missed one
kref_put() call in cfids_invalidation_worker() that should have been
converted to close_cached_dir(). |
| In the Linux kernel, the following vulnerability has been resolved:
lib/test_kho: check if KHO is enabled
We must check whether KHO is enabled prior to issuing KHO commands,
otherwise KHO internal data structures are not initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: s32cc: fix uninitialized memory in s32_pinctrl_desc
s32_pinctrl_desc is allocated with devm_kmalloc(), but not all of its
fields are initialized. Notably, num_custom_params is used in
pinconf_generic_parse_dt_config(), resulting in intermittent allocation
errors, such as the following splat when probing i2c-imx:
WARNING: CPU: 0 PID: 176 at mm/page_alloc.c:4795 __alloc_pages_noprof+0x290/0x300
[...]
Hardware name: NXP S32G3 Reference Design Board 3 (S32G-VNP-RDB3) (DT)
[...]
Call trace:
__alloc_pages_noprof+0x290/0x300 (P)
___kmalloc_large_node+0x84/0x168
__kmalloc_large_node_noprof+0x34/0x120
__kmalloc_noprof+0x2ac/0x378
pinconf_generic_parse_dt_config+0x68/0x1a0
s32_dt_node_to_map+0x104/0x248
dt_to_map_one_config+0x154/0x1d8
pinctrl_dt_to_map+0x12c/0x280
create_pinctrl+0x6c/0x270
pinctrl_get+0xc0/0x170
devm_pinctrl_get+0x50/0xa0
pinctrl_bind_pins+0x60/0x2a0
really_probe+0x60/0x3a0
[...]
__platform_driver_register+0x2c/0x40
i2c_adap_imx_init+0x28/0xff8 [i2c_imx]
[...]
This results in later parse failures that can cause issues in dependent
drivers:
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c0-pins/i2c0-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c0-pins/i2c0-grp0: could not parse node property
[...]
pca953x 0-0022: failed writing register: -6
i2c i2c-0: IMX I2C adapter registered
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c2-pins/i2c2-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c2-pins/i2c2-grp0: could not parse node property
i2c i2c-1: IMX I2C adapter registered
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c4-pins/i2c4-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c4-pins/i2c4-grp0: could not parse node property
i2c i2c-2: IMX I2C adapter registered
Fix this by initializing s32_pinctrl_desc with devm_kzalloc() instead of
devm_kmalloc() in s32_pinctrl_probe(), which sets the previously
uninitialized fields to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcm_loop: Fix segfault in tcm_loop_tpg_address_show()
If the allocation of tl_hba->sh fails in tcm_loop_driver_probe() and we
attempt to dereference it in tcm_loop_tpg_address_show() we will get a
segfault, see below for an example. So, check tl_hba->sh before
dereferencing it.
Unable to allocate struct scsi_host
BUG: kernel NULL pointer dereference, address: 0000000000000194
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 8356 Comm: tokio-runtime-w Not tainted 6.6.104.2-4.azl3 #1
Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 09/28/2024
RIP: 0010:tcm_loop_tpg_address_show+0x2e/0x50 [tcm_loop]
...
Call Trace:
<TASK>
configfs_read_iter+0x12d/0x1d0 [configfs]
vfs_read+0x1b5/0x300
ksys_read+0x6f/0xf0
... |