| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Gargoyle router management utility versions 1.5.x contain an authenticated OS command execution vulnerability in /utility/run_commands.sh. The application fails to properly restrict or validate input supplied via the 'commands' parameter, allowing an authenticated attacker to execute arbitrary shell commands on the underlying system. Successful exploitation may result in full compromise of the device, including unauthorized access to system files and execution of attacker-controlled commands. |
| A security flaw has been discovered in PHPGurukul Hospital Management System 1.0. Affected by this issue is some unknown functionality of the file /hms/hospital/docappsystem/adminviews.py of the component Admin Dashboard Page. Performing a manipulation results in improper authorization. Remote exploitation of the attack is possible. The exploit has been released to the public and may be used for attacks. |
| A vulnerability was found in Philipinho Simple-PHP-Blog up to 94b5d3e57308bce5dfbc44c3edafa9811893d958. Impacted is an unknown function of the file /login.php. Performing manipulation of the argument Username results in cross site scripting. The attack is possible to be carried out remotely. The exploit has been made public and could be used. This product adopts a rolling release strategy to maintain continuous delivery. Therefore, version details for affected or updated releases cannot be specified. The vendor was contacted early about this disclosure and makes clear that the product is "[f]or educational purposes only". |
| A stored cross-site scripting (XSS) vulnerability exists in the Altium Support Center AddComment endpoint due to missing server-side input sanitization. Although the client interface applies HTML escaping, the backend accepts and stores arbitrary HTML and JavaScript supplied via modified POST requests.
The injected content is rendered verbatim when support cases are viewed by other users, including support staff with elevated privileges, allowing execution of arbitrary JavaScript in the victim’s browser context. |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are 7.1.14 and 7.2.4. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in takeover of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.2 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H). |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are 7.1.14 and 7.2.4. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in takeover of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.2 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H). |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are 7.1.14 and 7.2.4. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle VM VirtualBox accessible data as well as unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.1 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:L). |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are 7.1.14 and 7.2.4. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in takeover of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.2 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H). |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in WPDeveloper Essential Addons for Elementor essential-addons-for-elementor-lite allows DOM-Based XSS.This issue affects Essential Addons for Elementor: from n/a through <= 6.5.3. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in Mikado-Themes Lekker lekker allows PHP Local File Inclusion.This issue affects Lekker: from n/a through <= 1.8. |
| soroban-fixed-point-math is a fixed-point math library for Soroban smart contacts. In versions 1.3.0 and 1.4.0, the `mulDiv(x, y, z)` function incorrectly handled cases where both the intermediate product $x * y$ and the divisor $z$ were negative. The logic assumed that if the intermediate product was negative, the final result must also be negative, neglecting the sign of $z$. This resulted in rounding being applied in the wrong direction for cases where both $x * y$ and $z$ were negative. The functions most at risk are `fixed_div_floor` and `fixed_div_ceil`, as they often use non-constant numbers as the divisor $z$ in `mulDiv`. This error is present in all signed `FixedPoint` and `SorobanFixedPoint` implementations, including `i64`, `i128`, and `I256`. Versions 1.3.1 and 1.4.1 contain a patch. No known workarounds for this issue are available. |
| vlt before 1.0.0-rc.10 mishandles path sanitization for tar, leading to path traversal during extraction. |
| Clatter is a no_std compatible, pure Rust implementation of the Noise protocol framework with post-quantum support. Versiosn prior to2.2.0 have a protocol compliance vulnerability. The library allowed post-quantum handshake patterns that violated the PSK validity rule (Noise Protocol Framework Section 9.3). This could allow PSK-derived keys to be used for encryption without proper randomization by self-chosen ephemeral randomness, weakening security guarantees and potentially allowing catastrophic key reuse. Affected default patterns include `noise_pqkk_psk0`, `noise_pqkn_psk0`, `noise_pqnk_psk0`, `noise_pqnn_psk0``, and some hybrid variants. Users of these patterns may have been using handshakes that do not meet the intended security properties. The issue is fully patched and released in Clatter v2.2.0. The fixed version includes runtime checks to detect offending handshake patterns. As a workaround, avoid using offending `*_psk0` variants of post-quantum patterns. Review custom handshake patterns carefully. |
| Wasmtime is a runtime for WebAssembly. Starting in version 29.0.0 and prior to version 36.0.5, 40.0.3, and 41.0.1, on x86-64 platforms with AVX, Wasmtime's compilation of the `f64.copysign` WebAssembly instruction with Cranelift may load 8 more bytes than is necessary. When signals-based-traps are disabled this can result in a uncaught segfault due to loading from unmapped guard pages. With guard pages disabled it's possible for out-of-sandbox data to be loaded, but unless there is another bug in Cranelift this data is not visible to WebAssembly guests. Wasmtime 36.0.5, 40.0.3, and 41.0.1 have been released to fix this issue. Users are recommended to upgrade to the patched versions of Wasmtime. Other affected versions are not patched and users should updated to supported major version instead. This bug can be worked around by enabling signals-based-traps. While disabling guard pages can be a quick fix in some situations, it's not recommended to disabled guard pages as it is a key defense-in-depth measure of Wasmtime. |
| SandboxJS is a JavaScript sandboxing library. Versions prior to 0.8.26 have a sandbox escape vulnerability due to `AsyncFunction` not being isolated in `SandboxFunction`. The library attempts to sandbox code execution by replacing the global `Function` constructor with a safe, sandboxed version (`SandboxFunction`). This is handled in `utils.ts` by mapping `Function` to `sandboxFunction` within a map used for lookups. However, before version 0.8.26, the library did not include mappings for `AsyncFunction`, `GeneratorFunction`, and `AsyncGeneratorFunction`. These constructors are not global properties but can be accessed via the `.constructor` property of an instance (e.g., `(async () => {}).constructor`). In `executor.ts`, property access is handled. When code running inside the sandbox accesses `.constructor` on an async function (which the sandbox allows creating), the `executor` retrieves the property value. Since `AsyncFunction` was not in the safe-replacement map, the `executor` returns the actual native host `AsyncFunction` constructor. Constructors for functions in JavaScript (like `Function`, `AsyncFunction`) create functions that execute in the global scope. By obtaining the host `AsyncFunction` constructor, an attacker can create a new async function that executes entirely outside the sandbox context, bypassing all restrictions and gaining full access to the host environment (Remote Code Execution). Version 0.8.26 patches this vulnerability. |
| Official Document Management System developed by 2100 Technology has a Incorrect Authorization vulnerability, allowing authenticated remote attackers to modify front-end code to read all official documents. |
| Jirafeau normally prevents browser preview for text files due to the possibility that for example SVG and HTML documents could be exploited for cross site scripting. This was done by storing the MIME type of a file and allowing only browser preview for MIME types beginning with image (except for image/svg+xml, see CVE-2022-30110, CVE-2024-12326 and CVE-2025-7066), video and audio. However, it was possible to bypass this check by sending a manipulated HTTP request with an invalid MIME type like image. When doing the preview, the browser tries to automatically detect the MIME type resulting in detecting SVG and possibly executing JavaScript code. To prevent this, MIME sniffing is disabled by sending the HTTP header X-Content-Type-Options: nosniff. |
| An out-of-band SQL injection vulnerability (OOB SQLi) has been detected in the Performance Evaluation (EDD) application developed by Gabinete Técnico de Programación. Exploiting this vulnerability in the parameter 'Id_usuario' in '/evaluacion_objetivos_anyo_sig_ver_auto.aspx', could allow an attacker to extract sensitive information from the database through external channels, without the affected application returning the data directly, compromising the confidentiality of the stored information. |
| An out-of-band SQL injection vulnerability (OOB SQLi) has been detected in the Performance Evaluation (EDD) application developed by Gabinete Técnico de Programación. Exploiting this vulnerability in the parameter 'Id_usuario’ in '/evaluacion_competencias_evalua.aspx', could allow an attacker to extract sensitive information from the database through external channels, without the affected application returning the data directly, compromising the confidentiality of the stored information. |
| The Vzaar Media Management plugin for WordPress is vulnerable to Reflected Cross-Site Scripting in all versions up to, and including, 1.2 due to insufficient input sanitization and output escaping on the $_SERVER['PHP_SELF'] variable. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. |