| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Missing Authorization vulnerability in zohocrm Zoho CRM Lead Magnet zoho-crm-forms allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Zoho CRM Lead Magnet: from n/a through <= 1.8.1.5. |
| Authorization Bypass Through User-Controlled Key vulnerability in Mikado-Themes Rosebud rosebud allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Rosebud: from n/a through <= 1.4. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in jagdish1o1 Delay Redirects delay-redirects allows DOM-Based XSS.This issue affects Delay Redirects: from n/a through <= 1.0.0. |
| In the Linux kernel, the following vulnerability has been resolved:
dm-verity: disable recursive forward error correction
There are two problems with the recursive correction:
1. It may cause denial-of-service. In fec_read_bufs, there is a loop that
has 253 iterations. For each iteration, we may call verity_hash_for_block
recursively. There is a limit of 4 nested recursions - that means that
there may be at most 253^4 (4 billion) iterations. Red Hat QE team
actually created an image that pushes dm-verity to this limit - and this
image just makes the udev-worker process get stuck in the 'D' state.
2. It doesn't work. In fec_read_bufs we store data into the variable
"fio->bufs", but fio bufs is shared between recursive invocations, if
"verity_hash_for_block" invoked correction recursively, it would
overwrite partially filled fio->bufs. |
| Improper Restriction of Excessive Authentication Attempts, Weak Password Recovery Mechanism for Forgotten Password vulnerability in Birebirsoft Software and Technology Solutions Sufirmam allows Brute Force, Password Recovery Exploitation.This issue affects Sufirmam: through 23012026. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. |
| An issue was discovered in Free5gc NRF 1.4.0. In the access-token generation logic of free5GC, the AccessTokenScopeCheck() function in file internal/sbi/processor/access_token.go bypasses all scope validation when the attacker uses a crafted targetNF value. This allows attackers to obtain an access token with any arbitrary scope. |
| Null pointer dereference in free5gc pcf 1.4.0 in file internal/sbi/processor/ampolicy.go in function HandleDeletePoliciesPolAssoId. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: check that server is running in unlock_filesystem
If we are trying to unlock the filesystem via an administrative
interface and nfsd isn't running, it crashes the server. This
happens currently because nfsd4_revoke_states() access state
structures (eg., conf_id_hashtbl) that has been freed as a part
of the server shutdown.
[ 59.465072] Call trace:
[ 59.465308] nfsd4_revoke_states+0x1b4/0x898 [nfsd] (P)
[ 59.465830] write_unlock_fs+0x258/0x440 [nfsd]
[ 59.466278] nfsctl_transaction_write+0xb0/0x120 [nfsd]
[ 59.466780] vfs_write+0x1f0/0x938
[ 59.467088] ksys_write+0xfc/0x1f8
[ 59.467395] __arm64_sys_write+0x74/0xb8
[ 59.467746] invoke_syscall.constprop.0+0xdc/0x1e8
[ 59.468177] do_el0_svc+0x154/0x1d8
[ 59.468489] el0_svc+0x40/0xe0
[ 59.468767] el0t_64_sync_handler+0xa0/0xe8
[ 59.469138] el0t_64_sync+0x1ac/0x1b0
Ensure this can't happen by taking the nfsd_mutex and checking that
the server is still up, and then holding the mutex across the call to
nfsd4_revoke_states(). |
| BloofoxCMS 0.5.2.1 contains a stored cross-site scripting vulnerability in the articles text parameter that allows authenticated attackers to inject malicious scripts. Attackers can insert malicious javascript payloads in the text field to execute scripts and potentially steal authenticated users' cookies. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: return the handler error from mon_handle_auth_done()
Currently any error from ceph_auth_handle_reply_done() is propagated
via finish_auth() but isn't returned from mon_handle_auth_done(). This
results in higher layers learning that (despite the monitor considering
us to be successfully authenticated) something went wrong in the
authentication phase and reacting accordingly, but msgr2 still trying
to proceed with establishing the session in the background. In the
case of secure mode this can trigger a WARN in setup_crypto() and later
lead to a NULL pointer dereference inside of prepare_auth_signature(). |
| In the Linux kernel, the following vulnerability has been resolved:
xhci: sideband: don't dereference freed ring when removing sideband endpoint
xhci_sideband_remove_endpoint() incorrecly assumes that the endpoint is
running and has a valid transfer ring.
Lianqin reported a crash during suspend/wake-up stress testing, and
found the cause to be dereferencing a non-existing transfer ring
'ep->ring' during xhci_sideband_remove_endpoint().
The endpoint and its ring may be in unknown state if this function
is called after xHCI was reinitialized in resume (lost power), or if
device is being re-enumerated, disconnected or endpoint already dropped.
Fix this by both removing unnecessary ring access, and by checking
ep->ring exists before dereferencing it. Also make sure endpoint is
running before attempting to stop it.
Remove the xhci_initialize_ring_info() call during sideband endpoint
removal as is it only initializes ring structure enqueue, dequeue and
cycle state values to their starting values without changing actual
hardware enqueue, dequeue and cycle state. Leaving them out of sync
is worse than leaving it as it is. The endpoint will get freed in after
this in most usecases.
If the (audio) class driver want's to reuse the endpoint after offload
then it is up to the class driver to ensure endpoint is properly set up. |
| In the Linux kernel, the following vulnerability has been resolved:
block: zero non-PI portion of auto integrity buffer
The auto-generated integrity buffer for writes needs to be fully
initialized before being passed to the underlying block device,
otherwise the uninitialized memory can be read back by userspace or
anyone with physical access to the storage device. If protection
information is generated, that portion of the integrity buffer is
already initialized. The integrity data is also zeroed if PI generation
is disabled via sysfs or the PI tuple size is 0. However, this misses
the case where PI is generated and the PI tuple size is nonzero, but the
metadata size is larger than the PI tuple. In this case, the remainder
("opaque") of the metadata is left uninitialized.
Generalize the BLK_INTEGRITY_CSUM_NONE check to cover any case when the
metadata is larger than just the PI tuple. |
| The All-in-One Video Gallery plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the `ajax_callback_create_bunny_stream_video`, `ajax_callback_get_bunny_stream_video`, and `ajax_callback_delete_bunny_stream_video` functions in all versions up to, and including, 4.6.4. This makes it possible for unauthenticated attackers to create and delete videos on the Bunny Stream CDN associated with the victim's account, provided they can obtain a valid nonce which is exposed in public player templates. |
| An issue was discovered in Dynamicweb before 9.12.8. An attacker can add a new administrator user without authentication. This flaw exists due to a logic issue when determining if the setup phases of the product can be run again. Once an attacker is authenticated as the new admin user they have added, it is possible to upload an executable file and achieve command execution. This is fixed in 9.5.9, 9.6.16, 9.7.8, 9.8.11, 9.9.8, 9.10.18, 9.12.8, and 9.13.0 (and later). |
| LiteSpeed Web Server Enterprise 5.4.11 contains an authenticated command injection vulnerability in the external app configuration interface. Authenticated administrators can inject shell commands through the 'Command' parameter in the server configuration, allowing remote code execution via path traversal and bash command injection. |
| YetiShare File Hosting Script 5.1.0 contains a server-side request forgery vulnerability that allows attackers to read local system files through the remote file upload feature. Attackers can exploit the url parameter in the url_upload_handler endpoint to access sensitive files like /etc/passwd by using file:/// protocol. |
| Incorrect access control in the authRoutes function of SpringBlade v4.5.0 allows attackers with low-level privileges to escalate privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix crash on profile change rollback failure
mlx5e_netdev_change_profile can fail to attach a new profile and can
fail to rollback to old profile, in such case, we could end up with a
dangling netdev with a fully reset netdev_priv. A retry to change
profile, e.g. another attempt to call mlx5e_netdev_change_profile via
switchdev mode change, will crash trying to access the now NULL
priv->mdev.
This fix allows mlx5e_netdev_change_profile() to handle previous
failures and an empty priv, by not assuming priv is valid.
Pass netdev and mdev to all flows requiring
mlx5e_netdev_change_profile() and avoid passing priv.
In mlx5e_netdev_change_profile() check if current priv is valid, and if
not, just attach the new profile without trying to access the old one.
This fixes the following oops, when enabling switchdev mode for the 2nd
time after first time failure:
## Enabling switchdev mode first time:
mlx5_core 0012:03:00.1: E-Switch: Supported tc chains and prios offload
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12
^^^^^^^^
mlx5_core 0000:00:03.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0)
## retry: Enabling switchdev mode 2nd time:
mlx5_core 0000:00:03.0: E-Switch: Supported tc chains and prios offload
BUG: kernel NULL pointer dereference, address: 0000000000000038
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 13 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc4+ #91 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:mlx5e_detach_netdev+0x3c/0x90
Code: 50 00 00 f0 80 4f 78 02 48 8b bf e8 07 00 00 48 85 ff 74 16 48 8b 73 78 48 d1 ee 83 e6 01 83 f6 01 40 0f b6 f6 e8 c4 42 00 00 <48> 8b 45 38 48 85 c0 74 08 48 89 df e8 cc 47 40 1e 48 8b bb f0 07
RSP: 0018:ffffc90000673890 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8881036a89c0 RCX: 0000000000000000
RDX: ffff888113f63800 RSI: ffffffff822fe720 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000002dcd R09: 0000000000000000
R10: ffffc900006738e8 R11: 00000000ffffffff R12: 0000000000000000
R13: 0000000000000000 R14: ffff8881036a89c0 R15: 0000000000000000
FS: 00007fdfb8384740(0000) GS:ffff88856a9d6000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000038 CR3: 0000000112ae0005 CR4: 0000000000370ef0
Call Trace:
<TASK>
mlx5e_netdev_change_profile+0x45/0xb0
mlx5e_vport_rep_load+0x27b/0x2d0
mlx5_esw_offloads_rep_load+0x72/0xf0
esw_offloads_enable+0x5d0/0x970
mlx5_eswitch_enable_locked+0x349/0x430
? is_mp_supported+0x57/0xb0
mlx5_devlink_eswitch_mode_set+0x26b/0x430
devlink_nl_eswitch_set_doit+0x6f/0xf0
genl_family_rcv_msg_doit+0xe8/0x140
genl_rcv_msg+0x18b/0x290
? __pfx_devlink_nl_pre_doit+0x10/0x10
? __pfx_devlink_nl_eswitch_set_doit+0x10/0x10
? __pfx_devlink_nl_post_doit+0x10/0x10
? __pfx_genl_rcv_msg+0x10/0x10
netlink_rcv_skb+0x52/0x100
genl_rcv+0x28/0x40
netlink_unicast+0x282/0x3e0
? __alloc_skb+0xd6/0x190
netlink_sendmsg+0x1f7/0x430
__sys_sendto+0x213/0x220
? __sys_recvmsg+0x6a/0xd0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x50/0x1f0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fdfb8495047 |
| In the Linux kernel, the following vulnerability has been resolved:
dst: fix races in rt6_uncached_list_del() and rt_del_uncached_list()
syzbot was able to crash the kernel in rt6_uncached_list_flush_dev()
in an interesting way [1]
Crash happens in list_del_init()/INIT_LIST_HEAD() while writing
list->prev, while the prior write on list->next went well.
static inline void INIT_LIST_HEAD(struct list_head *list)
{
WRITE_ONCE(list->next, list); // This went well
WRITE_ONCE(list->prev, list); // Crash, @list has been freed.
}
Issue here is that rt6_uncached_list_del() did not attempt to lock
ul->lock, as list_empty(&rt->dst.rt_uncached) returned
true because the WRITE_ONCE(list->next, list) happened on the other CPU.
We might use list_del_init_careful() and list_empty_careful(),
or make sure rt6_uncached_list_del() always grabs the spinlock
whenever rt->dst.rt_uncached_list has been set.
A similar fix is neeed for IPv4.
[1]
BUG: KASAN: slab-use-after-free in INIT_LIST_HEAD include/linux/list.h:46 [inline]
BUG: KASAN: slab-use-after-free in list_del_init include/linux/list.h:296 [inline]
BUG: KASAN: slab-use-after-free in rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline]
BUG: KASAN: slab-use-after-free in rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020
Write of size 8 at addr ffff8880294cfa78 by task kworker/u8:14/3450
CPU: 0 UID: 0 PID: 3450 Comm: kworker/u8:14 Tainted: G L syzkaller #0 PREEMPT_{RT,(full)}
Tainted: [L]=SOFTLOCKUP
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
Workqueue: netns cleanup_net
Call Trace:
<TASK>
dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
INIT_LIST_HEAD include/linux/list.h:46 [inline]
list_del_init include/linux/list.h:296 [inline]
rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline]
rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020
addrconf_ifdown+0x143/0x18a0 net/ipv6/addrconf.c:3853
addrconf_notify+0x1bc/0x1050 net/ipv6/addrconf.c:-1
notifier_call_chain+0x19d/0x3a0 kernel/notifier.c:85
call_netdevice_notifiers_extack net/core/dev.c:2268 [inline]
call_netdevice_notifiers net/core/dev.c:2282 [inline]
netif_close_many+0x29c/0x410 net/core/dev.c:1785
unregister_netdevice_many_notify+0xb50/0x2330 net/core/dev.c:12353
ops_exit_rtnl_list net/core/net_namespace.c:187 [inline]
ops_undo_list+0x3dc/0x990 net/core/net_namespace.c:248
cleanup_net+0x4de/0x7b0 net/core/net_namespace.c:696
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421
kthread+0x711/0x8a0 kernel/kthread.c:463
ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
</TASK>
Allocated by task 803:
kasan_save_stack mm/kasan/common.c:57 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:78
unpoison_slab_object mm/kasan/common.c:340 [inline]
__kasan_slab_alloc+0x6c/0x80 mm/kasan/common.c:366
kasan_slab_alloc include/linux/kasan.h:253 [inline]
slab_post_alloc_hook mm/slub.c:4953 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
kmem_cache_alloc_noprof+0x18d/0x6c0 mm/slub.c:5270
dst_alloc+0x105/0x170 net/core/dst.c:89
ip6_dst_alloc net/ipv6/route.c:342 [inline]
icmp6_dst_alloc+0x75/0x460 net/ipv6/route.c:3333
mld_sendpack+0x683/0xe60 net/ipv6/mcast.c:1844
mld_send_cr net/ipv6/mcast.c:2154 [inline]
mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421
kthread+0x711/0x8a0 kernel/kthread.c:463
ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: make free_choose_arg_map() resilient to partial allocation
free_choose_arg_map() may dereference a NULL pointer if its caller fails
after a partial allocation.
For example, in decode_choose_args(), if allocation of arg_map->args
fails, execution jumps to the fail label and free_choose_arg_map() is
called. Since arg_map->size is updated to a non-zero value before memory
allocation, free_choose_arg_map() will iterate over arg_map->args and
dereference a NULL pointer.
To prevent this potential NULL pointer dereference and make
free_choose_arg_map() more resilient, add checks for pointers before
iterating. |