| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: hpsa: Fix possible memory leak in hpsa_init_one()
The hpda_alloc_ctlr_info() allocates h and its field reply_map. However, in
hpsa_init_one(), if alloc_percpu() failed, the hpsa_init_one() jumps to
clean1 directly, which frees h and leaks the h->reply_map.
Fix by calling hpda_free_ctlr_info() to release h->replay_map and h instead
free h directly. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: fix memory leak in hns_roce_alloc_mr()
When hns_roce_mr_enable() failed in hns_roce_alloc_mr(), mr_key is not
released. Compiled test only. |
| In the Linux kernel, the following vulnerability has been resolved:
seccomp: Move copy_seccomp() to no failure path.
Our syzbot instance reported memory leaks in do_seccomp() [0], similar
to the report [1]. It shows that we miss freeing struct seccomp_filter
and some objects included in it.
We can reproduce the issue with the program below [2] which calls one
seccomp() and two clone() syscalls.
The first clone()d child exits earlier than its parent and sends a
signal to kill it during the second clone(), more precisely before the
fatal_signal_pending() test in copy_process(). When the parent receives
the signal, it has to destroy the embryonic process and return -EINTR to
user space. In the failure path, we have to call seccomp_filter_release()
to decrement the filter's refcount.
Initially, we called it in free_task() called from the failure path, but
the commit 3a15fb6ed92c ("seccomp: release filter after task is fully
dead") moved it to release_task() to notify user space as early as possible
that the filter is no longer used.
To keep the change and current seccomp refcount semantics, let's move
copy_seccomp() just after the signal check and add a WARN_ON_ONCE() in
free_task() for future debugging.
[0]:
unreferenced object 0xffff8880063add00 (size 256):
comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.914s)
hex dump (first 32 bytes):
01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace:
do_seccomp (./include/linux/slab.h:600 ./include/linux/slab.h:733 kernel/seccomp.c:666 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
unreferenced object 0xffffc90000035000 (size 4096):
comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
__vmalloc_node_range (mm/vmalloc.c:3226)
__vmalloc_node (mm/vmalloc.c:3261 (discriminator 4))
bpf_prog_alloc_no_stats (kernel/bpf/core.c:91)
bpf_prog_alloc (kernel/bpf/core.c:129)
bpf_prog_create_from_user (net/core/filter.c:1414)
do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
unreferenced object 0xffff888003fa1000 (size 1024):
comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
bpf_prog_alloc_no_stats (./include/linux/slab.h:600 ./include/linux/slab.h:733 kernel/bpf/core.c:95)
bpf_prog_alloc (kernel/bpf/core.c:129)
bpf_prog_create_from_user (net/core/filter.c:1414)
do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
unreferenced object 0xffff888006360240 (size 16):
comm "repro_seccomp", pid 230, jiffies 4294687090 (age 9.915s)
hex dump (first 16 bytes):
01 00 37 00 76 65 72 6c e0 83 01 06 80 88 ff ff ..7.verl........
backtrace:
bpf_prog_store_orig_filter (net/core/filter.c:1137)
bpf_prog_create_from_user (net/core/filter.c:1428)
do_seccomp (kernel/seccomp.c:671 kernel/seccomp.c:708 kernel/seccomp.c:1871 kernel/seccomp.c:1991)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
unreferenced object 0xffff888
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: pn533: Clear nfc_target before being used
Fix a slab-out-of-bounds read that occurs in nla_put() called from
nfc_genl_send_target() when target->sensb_res_len, which is duplicated
from an nfc_target in pn533, is too large as the nfc_target is not
properly initialized and retains garbage values. Clear nfc_targets with
memset() before they are used.
Found by a modified version of syzkaller.
BUG: KASAN: slab-out-of-bounds in nla_put
Call Trace:
memcpy
nla_put
nfc_genl_dump_targets
genl_lock_dumpit
netlink_dump
__netlink_dump_start
genl_family_rcv_msg_dumpit
genl_rcv_msg
netlink_rcv_skb
genl_rcv
netlink_unicast
netlink_sendmsg
sock_sendmsg
____sys_sendmsg
___sys_sendmsg
__sys_sendmsg
do_syscall_64 |
| In the Linux kernel, the following vulnerability has been resolved:
clk: ti: dra7-atl: Fix reference leak in of_dra7_atl_clk_probe
pm_runtime_get_sync() will increment pm usage counter.
Forgetting to putting operation will result in reference leak.
Add missing pm_runtime_put_sync in some error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_copy_file_range()
If the file is used by swap, before return -EOPNOTSUPP, should
free the xid, otherwise, the xid will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: mm: add missing memcpy in kasan_init
Hi Atish,
It seems that the panic is due to the missing memcpy during kasan_init.
Could you please check whether this patch is helpful?
When doing kasan_populate, the new allocated base_pud/base_p4d should
contain kasan_early_shadow_{pud, p4d}'s content. Add the missing memcpy
to avoid page fault when read/write kasan shadow region.
Tested on:
- qemu with sv57 and CONFIG_KASAN on.
- qemu with sv48 and CONFIG_KASAN on. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_typec: zero out stale pointers
`cros_typec_get_switch_handles` allocates four pointers when obtaining
type-c switch handles. These pointers are all freed if failing to obtain
any of them; therefore, pointers in `port` become stale. The stale
pointers eventually cause use-after-free or double free in later code
paths. Zeroing out all pointer fields after freeing to eliminate these
stale pointers. |
| In the Linux kernel, the following vulnerability has been resolved:
HSI: omap_ssi: Fix refcount leak in ssi_probe
When returning or breaking early from a
for_each_available_child_of_node() loop, we need to explicitly call
of_node_put() on the child node to possibly release the node. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: core: Fix kernel panic when remove non-standard SDIO card
SDIO tuple is only allocated for standard SDIO card, especially it causes
memory corruption issues when the non-standard SDIO card has removed, which
is because the card device's reference counter does not increase for it at
sdio_init_func(), but all SDIO card device reference counter gets decreased
at sdio_release_func(). |
| In the Linux kernel, the following vulnerability has been resolved:
io-wq: Fix memory leak in worker creation
If the CPU mask allocation for a node fails, then the memory allocated for
the 'io_wqe' struct of the current node doesn't get freed on the error
handling path, since it has not yet been added to the 'wqes' array.
This was spotted when fuzzing v6.1-rc1 with Syzkaller:
BUG: memory leak
unreferenced object 0xffff8880093d5000 (size 1024):
comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720
[<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130
[<000000004e107011>] io_wq_create+0x7b9/0xdc0
[<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d
[<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba
[<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce
[<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80
[<000000008a8a7508>] do_syscall_64+0x5d/0x90
[<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: qcom-hw: Fix memory leak in qcom_cpufreq_hw_read_lut()
If "cpu_dev" fails to get opp table in qcom_cpufreq_hw_read_lut(),
the program will return, resulting in "table" resource is not released. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ipw2200: fix memory leak in ipw_wdev_init()
In the error path of ipw_wdev_init(), exception value is returned, and
the memory applied for in the function is not released. Also the memory
is not released in ipw_pci_probe(). As a result, memory leakage occurs.
So memory release needs to be added to the error path of ipw_wdev_init(). |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper()
As the comment of pci_get_domain_bus_and_slot() says, it returns
a PCI device with refcount incremented, so it doesn't need to
call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI
device needs to be put in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix DMA mappings leak
During reallocation of RX buffers, new DMA mappings are created for
those buffers.
steps for reproduction:
while :
do
for ((i=0; i<=8160; i=i+32))
do
ethtool -G enp130s0f0 rx $i tx $i
sleep 0.5
ethtool -g enp130s0f0
done
done
This resulted in crash:
i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536
Driver BUG
WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50
Call Trace:
i40e_free_rx_resources+0x70/0x80 [i40e]
i40e_set_ringparam+0x27c/0x800 [i40e]
ethnl_set_rings+0x1b2/0x290
genl_family_rcv_msg_doit.isra.15+0x10f/0x150
genl_family_rcv_msg+0xb3/0x160
? rings_fill_reply+0x1a0/0x1a0
genl_rcv_msg+0x47/0x90
? genl_family_rcv_msg+0x160/0x160
netlink_rcv_skb+0x4c/0x120
genl_rcv+0x24/0x40
netlink_unicast+0x196/0x230
netlink_sendmsg+0x204/0x3d0
sock_sendmsg+0x4c/0x50
__sys_sendto+0xee/0x160
? handle_mm_fault+0xbe/0x1e0
? syscall_trace_enter+0x1d3/0x2c0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x5b/0x1a0
entry_SYSCALL_64_after_hwframe+0x65/0xca
RIP: 0033:0x7f5eac8b035b
Missing register, driver bug
WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140
Call Trace:
xdp_rxq_info_unreg+0x1e/0x50
i40e_free_rx_resources+0x70/0x80 [i40e]
i40e_set_ringparam+0x27c/0x800 [i40e]
ethnl_set_rings+0x1b2/0x290
genl_family_rcv_msg_doit.isra.15+0x10f/0x150
genl_family_rcv_msg+0xb3/0x160
? rings_fill_reply+0x1a0/0x1a0
genl_rcv_msg+0x47/0x90
? genl_family_rcv_msg+0x160/0x160
netlink_rcv_skb+0x4c/0x120
genl_rcv+0x24/0x40
netlink_unicast+0x196/0x230
netlink_sendmsg+0x204/0x3d0
sock_sendmsg+0x4c/0x50
__sys_sendto+0xee/0x160
? handle_mm_fault+0xbe/0x1e0
? syscall_trace_enter+0x1d3/0x2c0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x5b/0x1a0
entry_SYSCALL_64_after_hwframe+0x65/0xca
RIP: 0033:0x7f5eac8b035b
This was caused because of new buffers with different RX ring count should
substitute older ones, but those buffers were freed in
i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi,
thus kfree on rx_bi caused leak of already mapped DMA.
Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally
reallocate back to rx_bi when BPF program unloads.
If BPF program is loaded/unloaded and XSK pools are created, reallocate
RX queues accordingly in XSP_SETUP_XSK_POOL handler. |
| In the Linux kernel, the following vulnerability has been resolved:
ipmi: fix use after free in _ipmi_destroy_user()
The intf_free() function frees the "intf" pointer so we cannot
dereference it again on the next line. |
| In the Linux kernel, the following vulnerability has been resolved:
net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks()
syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for
commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in
rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section
protected by lock_sock() without realizing that rds_send_xmit() might call
lock_sock().
We don't need to protect cancel_delayed_work_sync() using lock_sock(), for
even if rds_{send,recv}_worker() re-queued this work while __flush_work()
from cancel_delayed_work_sync() was waiting for this work to complete,
retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP
bit. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored
Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE
is untagged"), mte_sync_tags() was only called for pte_tagged() entries
(those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use
test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently
setting PG_mte_tagged on an untagged page.
The above commit was required as guests may enable MTE without any
control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM.
However, the side-effect was that any page with a PTE that looked like
swap (or migration) was getting PG_mte_tagged set automatically. A
subsequent page copy (e.g. migration) copied the tags to the destination
page even if the tags were owned by KASAN.
This issue was masked by the page_kasan_tag_reset() call introduced in
commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags").
When this commit was reverted (20794545c146), KASAN started reporting
access faults because the overriding tags in a page did not match the
original page->flags (with CONFIG_KASAN_HW_TAGS=y):
BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26
Read at addr f5ff000017f2e000 by task syz-executor.1/2218
Pointer tag: [f5], memory tag: [f2]
Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual
place where tags are cleared (mte_sync_page_tags()) or restored
(mte_restore_tags()). |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: vdso: fix NULL deference in vdso_join_timens() when vfork
Testing tools/testing/selftests/timens/vfork_exec.c got below
kernel log:
[ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020
[ 6.842255] Oops [#1]
[ 6.842871] Modules linked in:
[ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8
[ 6.845861] Hardware name: riscv-virtio,qemu (DT)
[ 6.848009] epc : vdso_join_timens+0xd2/0x110
[ 6.850097] ra : vdso_join_timens+0xd2/0x110
[ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0
[ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030
[ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40
[ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c
[ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000
[ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038
[ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000
[ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38
[ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e
[ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f
[ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00
[ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d
[ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a
[ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4
[ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0
[ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214
[ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4
[ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee
[ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48
[ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2
[ 6.877484] ---[ end trace 0000000000000000 ]---
This is because the mm->context.vdso_info is NULL in vfork case. From
another side, mm->context.vdso_info either points to vdso info
for RV64 or vdso info for compat, there's no need to bloat riscv's
mm_context_t, we can handle the difference when setup the additional
page for vdso. |
| In the Linux kernel, the following vulnerability has been resolved:
mailbox: zynq-ipi: fix error handling while device_register() fails
If device_register() fails, it has two issues:
1. The name allocated by dev_set_name() is leaked.
2. The parent of device is not NULL, device_unregister() is called
in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because
of removing not added device.
Call put_device() to give up the reference, so the name is freed in
kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes()
to avoid null-ptr-deref. |