| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks()
syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for
commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in
rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section
protected by lock_sock() without realizing that rds_send_xmit() might call
lock_sock().
We don't need to protect cancel_delayed_work_sync() using lock_sock(), for
even if rds_{send,recv}_worker() re-queued this work while __flush_work()
from cancel_delayed_work_sync() was waiting for this work to complete,
retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP
bit. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored
Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE
is untagged"), mte_sync_tags() was only called for pte_tagged() entries
(those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use
test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently
setting PG_mte_tagged on an untagged page.
The above commit was required as guests may enable MTE without any
control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM.
However, the side-effect was that any page with a PTE that looked like
swap (or migration) was getting PG_mte_tagged set automatically. A
subsequent page copy (e.g. migration) copied the tags to the destination
page even if the tags were owned by KASAN.
This issue was masked by the page_kasan_tag_reset() call introduced in
commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags").
When this commit was reverted (20794545c146), KASAN started reporting
access faults because the overriding tags in a page did not match the
original page->flags (with CONFIG_KASAN_HW_TAGS=y):
BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26
Read at addr f5ff000017f2e000 by task syz-executor.1/2218
Pointer tag: [f5], memory tag: [f2]
Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual
place where tags are cleared (mte_sync_page_tags()) or restored
(mte_restore_tags()). |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: vdso: fix NULL deference in vdso_join_timens() when vfork
Testing tools/testing/selftests/timens/vfork_exec.c got below
kernel log:
[ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020
[ 6.842255] Oops [#1]
[ 6.842871] Modules linked in:
[ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8
[ 6.845861] Hardware name: riscv-virtio,qemu (DT)
[ 6.848009] epc : vdso_join_timens+0xd2/0x110
[ 6.850097] ra : vdso_join_timens+0xd2/0x110
[ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0
[ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030
[ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40
[ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c
[ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000
[ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038
[ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000
[ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38
[ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e
[ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f
[ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00
[ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d
[ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a
[ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4
[ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0
[ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214
[ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4
[ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee
[ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48
[ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2
[ 6.877484] ---[ end trace 0000000000000000 ]---
This is because the mm->context.vdso_info is NULL in vfork case. From
another side, mm->context.vdso_info either points to vdso info
for RV64 or vdso info for compat, there's no need to bloat riscv's
mm_context_t, we can handle the difference when setup the additional
page for vdso. |
| In the Linux kernel, the following vulnerability has been resolved:
mailbox: zynq-ipi: fix error handling while device_register() fails
If device_register() fails, it has two issues:
1. The name allocated by dev_set_name() is leaked.
2. The parent of device is not NULL, device_unregister() is called
in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because
of removing not added device.
Call put_device() to give up the reference, so the name is freed in
kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes()
to avoid null-ptr-deref. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix "kernel NULL pointer dereference" error
When rxe_queue_init in the function rxe_qp_init_req fails,
both qp->req.task.func and qp->req.task.arg are not initialized.
Because of creation of qp fails, the function rxe_create_qp will
call rxe_qp_do_cleanup to handle allocated resource.
Before calling __rxe_do_task, both qp->req.task.func and
qp->req.task.arg should be checked. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: omap_hsmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value,
it will lead two issues:
1. The memory that allocated in mmc_alloc_host() is leaked.
2. In the remove() path, mmc_remove_host() will be called to
delete device, but it's not added yet, it will lead a kernel
crash because of null-ptr-deref in device_del().
Fix this by checking the return value and goto error path wihch
will call mmc_free_host(). |
| In the Linux kernel, the following vulnerability has been resolved:
misc: ocxl: fix possible name leak in ocxl_file_register_afu()
If device_register() returns error in ocxl_file_register_afu(),
the name allocated by dev_set_name() need be freed. As comment
of device_register() says, it should use put_device() to give
up the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanup(),
and info is freed in info_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix deadlock due to mbcache entry corruption
When manipulating xattr blocks, we can deadlock infinitely looping
inside ext4_xattr_block_set() where we constantly keep finding xattr
block for reuse in mbcache but we are unable to reuse it because its
reference count is too big. This happens because cache entry for the
xattr block is marked as reusable (e_reusable set) although its
reference count is too big. When this inconsistency happens, this
inconsistent state is kept indefinitely and so ext4_xattr_block_set()
keeps retrying indefinitely.
The inconsistent state is caused by non-atomic update of e_reusable bit.
e_reusable is part of a bitfield and e_reusable update can race with
update of e_referenced bit in the same bitfield resulting in loss of one
of the updates. Fix the problem by using atomic bitops instead.
This bug has been around for many years, but it became *much* easier
to hit after commit 65f8b80053a1 ("ext4: fix race when reusing xattr
blocks"). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix memory leak in vmw_mksstat_add_ioctl()
If the copy of the description string from userspace fails, then the page
for the instance descriptor doesn't get freed before returning -EFAULT,
which leads to a memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: early: xhci-dbc: Fix a potential out-of-bound memory access
If xdbc_bulk_write() fails, the values in 'buf' can be anything. So the
string is not guaranteed to be NULL terminated when xdbc_trace() is called.
Reserve an extra byte, which will be zeroed automatically because 'buf' is
a static variable, in order to avoid troubles, should it happen. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd-mbhc-v2: fix resource leaks on component remove
The MBHC resources must be released on component probe failure and
removal so can not be tied to the lifetime of the component device.
This is specifically needed to allow probe deferrals of the sound card
which otherwise fails when reprobing the codec component:
snd-sc8280xp sound: ASoC: failed to instantiate card -517
genirq: Flags mismatch irq 299. 00002001 (mbhc sw intr) vs. 00002001 (mbhc sw intr)
wcd938x_codec audio-codec: Failed to request mbhc interrupts -16
wcd938x_codec audio-codec: mbhc initialization failed
wcd938x_codec audio-codec: ASoC: error at snd_soc_component_probe on audio-codec: -16
snd-sc8280xp sound: ASoC: failed to instantiate card -16 |
| In the Linux kernel, the following vulnerability has been resolved:
dccp: fix data-race around dp->dccps_mss_cache
dccp_sendmsg() reads dp->dccps_mss_cache before locking the socket.
Same thing in do_dccp_getsockopt().
Add READ_ONCE()/WRITE_ONCE() annotations,
and change dccp_sendmsg() to check again dccps_mss_cache
after socket is locked. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: Drop aux devices together with DP controller
Using devres to depopulate the aux bus made sure that upon a probe
deferral the EDP panel device would be destroyed and recreated upon next
attempt.
But the struct device which the devres is tied to is the DPUs
(drm_dev->dev), which may be happen after the DP controller is torn
down.
Indications of this can be seen in the commonly seen EDID-hexdump full
of zeros in the log, or the occasional/rare KASAN fault where the
panel's attempt to read the EDID information causes a use after free on
DP resources.
It's tempting to move the devres to the DP controller's struct device,
but the resources used by the device(s) on the aux bus are explicitly
torn down in the error path. The KASAN-reported use-after-free also
remains, as the DP aux "module" explicitly frees its devres-allocated
memory in this code path.
As such, explicitly depopulate the aux bus in the error path, and in the
component unbind path, to avoid these issues.
Patchwork: https://patchwork.freedesktop.org/patch/542163/ |
| In the Linux kernel, the following vulnerability has been resolved:
ip6_vti: fix slab-use-after-free in decode_session6
When ipv6_vti device is set to the qdisc of the sfb type, the cb field
of the sent skb may be modified during enqueuing. Then,
slab-use-after-free may occur when ipv6_vti device sends IPv6 packets.
The stack information is as follows:
BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890
Read of size 1 at addr ffff88802e08edc2 by task swapper/0/0
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.4.0-next-20230707-00001-g84e2cad7f979 #410
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0xd9/0x150
print_address_description.constprop.0+0x2c/0x3c0
kasan_report+0x11d/0x130
decode_session6+0x103f/0x1890
__xfrm_decode_session+0x54/0xb0
vti6_tnl_xmit+0x3e6/0x1ee0
dev_hard_start_xmit+0x187/0x700
sch_direct_xmit+0x1a3/0xc30
__qdisc_run+0x510/0x17a0
__dev_queue_xmit+0x2215/0x3b10
neigh_connected_output+0x3c2/0x550
ip6_finish_output2+0x55a/0x1550
ip6_finish_output+0x6b9/0x1270
ip6_output+0x1f1/0x540
ndisc_send_skb+0xa63/0x1890
ndisc_send_rs+0x132/0x6f0
addrconf_rs_timer+0x3f1/0x870
call_timer_fn+0x1a0/0x580
expire_timers+0x29b/0x4b0
run_timer_softirq+0x326/0x910
__do_softirq+0x1d4/0x905
irq_exit_rcu+0xb7/0x120
sysvec_apic_timer_interrupt+0x97/0xc0
</IRQ>
Allocated by task 9176:
kasan_save_stack+0x22/0x40
kasan_set_track+0x25/0x30
__kasan_slab_alloc+0x7f/0x90
kmem_cache_alloc_node+0x1cd/0x410
kmalloc_reserve+0x165/0x270
__alloc_skb+0x129/0x330
netlink_sendmsg+0x9b1/0xe30
sock_sendmsg+0xde/0x190
____sys_sendmsg+0x739/0x920
___sys_sendmsg+0x110/0x1b0
__sys_sendmsg+0xf7/0x1c0
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 9176:
kasan_save_stack+0x22/0x40
kasan_set_track+0x25/0x30
kasan_save_free_info+0x2b/0x40
____kasan_slab_free+0x160/0x1c0
slab_free_freelist_hook+0x11b/0x220
kmem_cache_free+0xf0/0x490
skb_free_head+0x17f/0x1b0
skb_release_data+0x59c/0x850
consume_skb+0xd2/0x170
netlink_unicast+0x54f/0x7f0
netlink_sendmsg+0x926/0xe30
sock_sendmsg+0xde/0x190
____sys_sendmsg+0x739/0x920
___sys_sendmsg+0x110/0x1b0
__sys_sendmsg+0xf7/0x1c0
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The buggy address belongs to the object at ffff88802e08ed00
which belongs to the cache skbuff_small_head of size 640
The buggy address is located 194 bytes inside of
freed 640-byte region [ffff88802e08ed00, ffff88802e08ef80)
As commit f855691975bb ("xfrm6: Fix the nexthdr offset in
_decode_session6.") showed, xfrm_decode_session was originally intended
only for the receive path. IP6CB(skb)->nhoff is not set during
transmission. Therefore, set the cb field in the skb to 0 before
sending packets. |
| In the Linux kernel, the following vulnerability has been resolved:
block/rq_qos: protect rq_qos apis with a new lock
commit 50e34d78815e ("block: disable the elevator int del_gendisk")
move rq_qos_exit() from disk_release() to del_gendisk(), this will
introduce some problems:
1) If rq_qos_add() is triggered by enabling iocost/iolatency through
cgroupfs, then it can concurrent with del_gendisk(), it's not safe to
write 'q->rq_qos' concurrently.
2) Activate cgroup policy that is relied on rq_qos will call
rq_qos_add() and blkcg_activate_policy(), and if rq_qos_exit() is
called in the middle, null-ptr-dereference will be triggered in
blkcg_activate_policy().
3) blkg_conf_open_bdev() can call blkdev_get_no_open() first to find the
disk, then if rq_qos_exit() from del_gendisk() is done before
rq_qos_add(), then memory will be leaked.
This patch add a new disk level mutex 'rq_qos_mutex':
1) The lock will protect rq_qos_exit() directly.
2) For wbt that doesn't relied on blk-cgroup, rq_qos_add() can only be
called from disk initialization for now because wbt can't be
destructed until rq_qos_exit(), so it's safe not to protect wbt for
now. Hoever, in case that rq_qos dynamically destruction is supported
in the furture, this patch also protect rq_qos_add() from wbt_init()
directly, this is enough because blk-sysfs already synchronize
writers with disk removal.
3) For iocost and iolatency, in order to synchronize disk removal and
cgroup configuration, the lock is held after blkdev_get_no_open()
from blkg_conf_open_bdev(), and is released in blkg_conf_exit().
In order to fix the above memory leak, disk_live() is checked after
holding the new lock. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: use internal state to free traffic IRQs
If the system tries to close the netdev while iavf_reset_task() is
running, __LINK_STATE_START will be cleared and netif_running() will
return false in iavf_reinit_interrupt_scheme(). This will result in
iavf_free_traffic_irqs() not being called and a leak as follows:
[7632.489326] remove_proc_entry: removing non-empty directory 'irq/999', leaking at least 'iavf-enp24s0f0v0-TxRx-0'
[7632.490214] WARNING: CPU: 0 PID: 10 at fs/proc/generic.c:718 remove_proc_entry+0x19b/0x1b0
is shown when pci_disable_msix() is later called. Fix by using the
internal adapter state. The traffic IRQs will always exist if
state == __IAVF_RUNNING. |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: annotate lockless accesses to nlk->max_recvmsg_len
syzbot reported a data-race in data-race in netlink_recvmsg() [1]
Indeed, netlink_recvmsg() can be run concurrently,
and netlink_dump() also needs protection.
[1]
BUG: KCSAN: data-race in netlink_recvmsg / netlink_recvmsg
read to 0xffff888141840b38 of 8 bytes by task 23057 on cpu 0:
netlink_recvmsg+0xea/0x730 net/netlink/af_netlink.c:1988
sock_recvmsg_nosec net/socket.c:1017 [inline]
sock_recvmsg net/socket.c:1038 [inline]
__sys_recvfrom+0x1ee/0x2e0 net/socket.c:2194
__do_sys_recvfrom net/socket.c:2212 [inline]
__se_sys_recvfrom net/socket.c:2208 [inline]
__x64_sys_recvfrom+0x78/0x90 net/socket.c:2208
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
write to 0xffff888141840b38 of 8 bytes by task 23037 on cpu 1:
netlink_recvmsg+0x114/0x730 net/netlink/af_netlink.c:1989
sock_recvmsg_nosec net/socket.c:1017 [inline]
sock_recvmsg net/socket.c:1038 [inline]
____sys_recvmsg+0x156/0x310 net/socket.c:2720
___sys_recvmsg net/socket.c:2762 [inline]
do_recvmmsg+0x2e5/0x710 net/socket.c:2856
__sys_recvmmsg net/socket.c:2935 [inline]
__do_sys_recvmmsg net/socket.c:2958 [inline]
__se_sys_recvmmsg net/socket.c:2951 [inline]
__x64_sys_recvmmsg+0xe2/0x160 net/socket.c:2951
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x0000000000000000 -> 0x0000000000001000
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 23037 Comm: syz-executor.2 Not tainted 6.3.0-rc4-syzkaller-00195-g5a57b48fdfcb #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix workqueue leak on bind errors
Make sure to destroy the workqueue also in case of early errors during
bind (e.g. a subcomponent failing to bind).
Since commit c3b790ea07a1 ("drm: Manage drm_mode_config_init with
drmm_") the mode config will be freed when the drm device is released
also when using the legacy interface, but add an explicit cleanup for
consistency and to facilitate backporting.
Patchwork: https://patchwork.freedesktop.org/patch/525093/ |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5-cache: fix a deadlock in r5l_exit_log()
Commit b13015af94cf ("md/raid5-cache: Clear conf->log after finishing
work") introduce a new problem:
// caller hold reconfig_mutex
r5l_exit_log
flush_work(&log->disable_writeback_work)
r5c_disable_writeback_async
wait_event
/*
* conf->log is not NULL, and mddev_trylock()
* will fail, wait_event() can never pass.
*/
conf->log = NULL
Fix this problem by setting 'config->log' to NULL before wake_up() as it
used to be, so that wait_event() from r5c_disable_writeback_async() can
exist. In the meantime, move forward md_unregister_thread() so that
null-ptr-deref this commit fixed can still be fixed. |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: Fix error handling for SOCK_DGRAM in kcm_sendmsg().
syzkaller found a memory leak in kcm_sendmsg(), and commit c821a88bd720
("kcm: Fix memory leak in error path of kcm_sendmsg()") suppressed it by
updating kcm_tx_msg(head)->last_skb if partial data is copied so that the
following sendmsg() will resume from the skb.
However, we cannot know how many bytes were copied when we get the error.
Thus, we could mess up the MSG_MORE queue.
When kcm_sendmsg() fails for SOCK_DGRAM, we should purge the queue as we
do so for UDP by udp_flush_pending_frames().
Even without this change, when the error occurred, the following sendmsg()
resumed from a wrong skb and the queue was messed up. However, we have
yet to get such a report, and only syzkaller stumbled on it. So, this
can be changed safely.
Note this does not change SOCK_SEQPACKET behaviour. |