Search Results (16740 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50672 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mailbox: zynq-ipi: fix error handling while device_register() fails If device_register() fails, it has two issues: 1. The name allocated by dev_set_name() is leaked. 2. The parent of device is not NULL, device_unregister() is called in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because of removing not added device. Call put_device() to give up the reference, so the name is freed in kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes() to avoid null-ptr-deref.
CVE-2022-50674 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: vdso: fix NULL deference in vdso_join_timens() when vfork Testing tools/testing/selftests/timens/vfork_exec.c got below kernel log: [ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020 [ 6.842255] Oops [#1] [ 6.842871] Modules linked in: [ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8 [ 6.845861] Hardware name: riscv-virtio,qemu (DT) [ 6.848009] epc : vdso_join_timens+0xd2/0x110 [ 6.850097] ra : vdso_join_timens+0xd2/0x110 [ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0 [ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030 [ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40 [ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c [ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000 [ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038 [ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000 [ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38 [ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e [ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f [ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00 [ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d [ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a [ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4 [ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0 [ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214 [ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4 [ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee [ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48 [ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2 [ 6.877484] ---[ end trace 0000000000000000 ]--- This is because the mm->context.vdso_info is NULL in vfork case. From another side, mm->context.vdso_info either points to vdso info for RV64 or vdso info for compat, there's no need to bloat riscv's mm_context_t, we can handle the difference when setup the additional page for vdso.
CVE-2022-50675 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE is untagged"), mte_sync_tags() was only called for pte_tagged() entries (those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently setting PG_mte_tagged on an untagged page. The above commit was required as guests may enable MTE without any control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM. However, the side-effect was that any page with a PTE that looked like swap (or migration) was getting PG_mte_tagged set automatically. A subsequent page copy (e.g. migration) copied the tags to the destination page even if the tags were owned by KASAN. This issue was masked by the page_kasan_tag_reset() call introduced in commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags"). When this commit was reverted (20794545c146), KASAN started reporting access faults because the overriding tags in a page did not match the original page->flags (with CONFIG_KASAN_HW_TAGS=y): BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26 Read at addr f5ff000017f2e000 by task syz-executor.1/2218 Pointer tag: [f5], memory tag: [f2] Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual place where tags are cleared (mte_sync_page_tags()) or restored (mte_restore_tags()).
CVE-2022-50676 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks() syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section protected by lock_sock() without realizing that rds_send_xmit() might call lock_sock(). We don't need to protect cancel_delayed_work_sync() using lock_sock(), for even if rds_{send,recv}_worker() re-queued this work while __flush_work() from cancel_delayed_work_sync() was waiting for this work to complete, retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP bit.
CVE-2022-50635 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: powerpc/kprobes: Fix null pointer reference in arch_prepare_kprobe() I found a null pointer reference in arch_prepare_kprobe(): # echo 'p cmdline_proc_show' > kprobe_events # echo 'p cmdline_proc_show+16' >> kprobe_events Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc000000000050bfc Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: CPU: 0 PID: 122 Comm: sh Not tainted 6.0.0-rc3-00007-gdcf8e5633e2e #10 NIP: c000000000050bfc LR: c000000000050bec CTR: 0000000000005bdc REGS: c0000000348475b0 TRAP: 0300 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 88002444 XER: 20040006 CFAR: c00000000022d100 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0 ... NIP arch_prepare_kprobe+0x10c/0x2d0 LR arch_prepare_kprobe+0xfc/0x2d0 Call Trace: 0xc0000000012f77a0 (unreliable) register_kprobe+0x3c0/0x7a0 __register_trace_kprobe+0x140/0x1a0 __trace_kprobe_create+0x794/0x1040 trace_probe_create+0xc4/0xe0 create_or_delete_trace_kprobe+0x2c/0x80 trace_parse_run_command+0xf0/0x210 probes_write+0x20/0x40 vfs_write+0xfc/0x450 ksys_write+0x84/0x140 system_call_exception+0x17c/0x3a0 system_call_vectored_common+0xe8/0x278 --- interrupt: 3000 at 0x7fffa5682de0 NIP: 00007fffa5682de0 LR: 0000000000000000 CTR: 0000000000000000 REGS: c000000034847e80 TRAP: 3000 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 44002408 XER: 00000000 The address being probed has some special: cmdline_proc_show: Probe based on ftrace cmdline_proc_show+16: Probe for the next instruction at the ftrace location The ftrace-based kprobe does not generate kprobe::ainsn::insn, it gets set to NULL. In arch_prepare_kprobe() it will check for: ... prev = get_kprobe(p->addr - 1); preempt_enable_no_resched(); if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) { ... If prev is based on ftrace, 'ppc_inst_read(prev->ainsn.insn)' will occur with a null pointer reference. At this point prev->addr will not be a prefixed instruction, so the check can be skipped. Check if prev is ftrace-based kprobe before reading 'prev->ainsn.insn' to fix this problem. [mpe: Trim oops]
CVE-2022-50634 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: power: supply: cw2015: Fix potential null-ptr-deref in cw_bat_probe() cw_bat_probe() calls create_singlethread_workqueue() and not checked the ret value, which may return NULL. And a null-ptr-deref may happen: cw_bat_probe() create_singlethread_workqueue() # failed, cw_bat->wq is NULL queue_delayed_work() queue_delayed_work_on() __queue_delayed_work() # warning here, but continue __queue_work() # access wq->flags, null-ptr-deref Check the ret value and return -ENOMEM if it is NULL.
CVE-2022-50633 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: qcom: Fix memory leak in dwc3_qcom_interconnect_init of_icc_get() alloc resources for path handle, we should release it when not need anymore. Like the release in dwc3_qcom_interconnect_exit() function. Add icc_put() in error handling to fix this.
CVE-2022-50632 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: perf: marvell_cn10k: Fix hotplug callback leak in tad_pmu_init() tad_pmu_init() won't remove the callback added by cpuhp_setup_state_multi() when platform_driver_register() failed. Remove the callback by cpuhp_remove_multi_state() in fail path. Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus: arm-ccn: Prevent hotplug callback leak")
CVE-2022-50657 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: mm: add missing memcpy in kasan_init Hi Atish, It seems that the panic is due to the missing memcpy during kasan_init. Could you please check whether this patch is helpful? When doing kasan_populate, the new allocated base_pud/base_p4d should contain kasan_early_shadow_{pud, p4d}'s content. Add the missing memcpy to avoid page fault when read/write kasan shadow region. Tested on: - qemu with sv57 and CONFIG_KASAN on. - qemu with sv48 and CONFIG_KASAN on.
CVE-2023-53814 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix dropping valid root bus resources with .end = zero On r8a7791/koelsch: kmemleak: 1 new suspected memory leaks (see /sys/kernel/debug/kmemleak) # cat /sys/kernel/debug/kmemleak unreferenced object 0xc3a34e00 (size 64): comm "swapper/0", pid 1, jiffies 4294937460 (age 199.080s) hex dump (first 32 bytes): b4 5d 81 f0 b4 5d 81 f0 c0 b0 a2 c3 00 00 00 00 .]...].......... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<fe3aa979>] __kmalloc+0xf0/0x140 [<34bd6bc0>] resource_list_create_entry+0x18/0x38 [<767046bc>] pci_add_resource_offset+0x20/0x68 [<b3f3edf2>] devm_of_pci_get_host_bridge_resources.constprop.0+0xb0/0x390 When coalescing two resources for a contiguous aperture, the second resource is enlarged to cover the full contiguous range, while the first resource is marked invalid. This invalidation is done by clearing the flags, start, and end members. When adding the initial resources to the bus later, invalid resources are skipped. Unfortunately, the check for an invalid resource considers only the end member, causing false positives. E.g. on r8a7791/koelsch, root bus resource 0 ("bus 00") is skipped, and no longer registered with pci_bus_insert_busn_res() (causing the memory leak), nor printed: pci-rcar-gen2 ee090000.pci: host bridge /soc/pci@ee090000 ranges: pci-rcar-gen2 ee090000.pci: MEM 0x00ee080000..0x00ee08ffff -> 0x00ee080000 pci-rcar-gen2 ee090000.pci: PCI: revision 11 pci-rcar-gen2 ee090000.pci: PCI host bridge to bus 0000:00 -pci_bus 0000:00: root bus resource [bus 00] pci_bus 0000:00: root bus resource [mem 0xee080000-0xee08ffff] Fix this by only skipping resources where all of the flags, start, and end members are zero.
CVE-2023-53813 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix rbtree traversal bug in ext4_mb_use_preallocated During allocations, while looking for preallocations(PA) in the per inode rbtree, we can't do a direct traversal of the tree because ext4_mb_discard_group_preallocation() can paralelly mark the pa deleted and that can cause direct traversal to skip some entries. This was leading to a BUG_ON() being hit [1] when we missed a PA that could satisfy our request and ultimately tried to create a new PA that would overlap with the missed one. To makes sure we handle that case while still keeping the performance of the rbtree, we make use of the fact that the only pa that could possibly overlap the original goal start is the one that satisfies the below conditions: 1. It must have it's logical start immediately to the left of (ie less than) original logical start. 2. It must not be deleted To find this pa we use the following traversal method: 1. Descend into the rbtree normally to find the immediate neighboring PA. Here we keep descending irrespective of if the PA is deleted or if it overlaps with our request etc. The goal is to find an immediately adjacent PA. 2. If the found PA is on right of original goal, use rb_prev() to find the left adjacent PA. 3. Check if this PA is deleted and keep moving left with rb_prev() until a non deleted PA is found. 4. This is the PA we are looking for. Now we can check if it can satisfy the original request and proceed accordingly. This approach also takes care of having deleted PAs in the tree. (While we are at it, also fix a possible overflow bug in calculating the end of a PA) [1] https://lore.kernel.org/linux-ext4/CA+G9fYv2FRpLqBZf34ZinR8bU2_ZRAUOjKAD3+tKRFaEQHtt8Q@mail.gmail.com/
CVE-2023-53812 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: fix decoder disable pm crash Can't call pm_runtime_disable when the architecture support sub device for 'dev->pm.dev' is NUll, or will get below crash log. [ 10.771551] pc : _raw_spin_lock_irq+0x4c/0xa0 [ 10.771556] lr : __pm_runtime_disable+0x30/0x130 [ 10.771558] sp : ffffffc01e4cb800 [ 10.771559] x29: ffffffc01e4cb800 x28: ffffffdf082108a8 [ 10.771563] x27: ffffffc01e4cbd70 x26: ffffff8605df55f0 [ 10.771567] x25: 0000000000000002 x24: 0000000000000002 [ 10.771570] x23: ffffff85c0dc9c00 x22: 0000000000000001 [ 10.771573] x21: 0000000000000001 x20: 0000000000000000 [ 10.771577] x19: 00000000000000f4 x18: ffffffdf2e9fbe18 [ 10.771580] x17: 0000000000000000 x16: ffffffdf2df13c74 [ 10.771583] x15: 00000000000002ea x14: 0000000000000058 [ 10.771587] x13: ffffffdf2de1b62c x12: ffffffdf2e9e30e4 [ 10.771590] x11: 0000000000000000 x10: 0000000000000001 [ 10.771593] x9 : 0000000000000000 x8 : 00000000000000f4 [ 10.771596] x7 : 6bff6264632c6264 x6 : 0000000000008000 [ 10.771600] x5 : 0080000000000000 x4 : 0000000000000001 [ 10.771603] x3 : 0000000000000008 x2 : 0000000000000001 [ 10.771608] x1 : 0000000000000000 x0 : 00000000000000f4 [ 10.771613] Call trace: [ 10.771617] _raw_spin_lock_irq+0x4c/0xa0 [ 10.771620] __pm_runtime_disable+0x30/0x130 [ 10.771657] mtk_vcodec_probe+0x69c/0x728 [mtk_vcodec_dec 800cc929d6631f79f9b273254c8db94d0d3500dc] [ 10.771662] platform_drv_probe+0x9c/0xbc [ 10.771665] really_probe+0x13c/0x3a0 [ 10.771668] driver_probe_device+0x84/0xc0 [ 10.771671] device_driver_attach+0x54/0x78
CVE-2023-53811 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Cap MSIX used to online CPUs + 1 The irdma driver can use a maximum number of msix vectors equal to num_online_cpus() + 1 and the kernel warning stack below is shown if that number is exceeded. The kernel throws a warning as the driver tries to update the affinity hint with a CPU mask greater than the max CPU IDs. Fix this by capping the MSIX vectors to num_online_cpus() + 1. WARNING: CPU: 7 PID: 23655 at include/linux/cpumask.h:106 irdma_cfg_ceq_vector+0x34c/0x3f0 [irdma] RIP: 0010:irdma_cfg_ceq_vector+0x34c/0x3f0 [irdma] Call Trace: irdma_rt_init_hw+0xa62/0x1290 [irdma] ? irdma_alloc_local_mac_entry+0x1a0/0x1a0 [irdma] ? __is_kernel_percpu_address+0x63/0x310 ? rcu_read_lock_held_common+0xe/0xb0 ? irdma_lan_unregister_qset+0x280/0x280 [irdma] ? irdma_request_reset+0x80/0x80 [irdma] ? ice_get_qos_params+0x84/0x390 [ice] irdma_probe+0xa40/0xfc0 [irdma] ? rcu_read_lock_bh_held+0xd0/0xd0 ? irdma_remove+0x140/0x140 [irdma] ? rcu_read_lock_sched_held+0x62/0xe0 ? down_write+0x187/0x3d0 ? auxiliary_match_id+0xf0/0x1a0 ? irdma_remove+0x140/0x140 [irdma] auxiliary_bus_probe+0xa6/0x100 __driver_probe_device+0x4a4/0xd50 ? __device_attach_driver+0x2c0/0x2c0 driver_probe_device+0x4a/0x110 __driver_attach+0x1aa/0x350 bus_for_each_dev+0x11d/0x1b0 ? subsys_dev_iter_init+0xe0/0xe0 bus_add_driver+0x3b1/0x610 driver_register+0x18e/0x410 ? 0xffffffffc0b88000 irdma_init_module+0x50/0xaa [irdma] do_one_initcall+0x103/0x5f0 ? perf_trace_initcall_level+0x420/0x420 ? do_init_module+0x4e/0x700 ? __kasan_kmalloc+0x7d/0xa0 ? kmem_cache_alloc_trace+0x188/0x2b0 ? kasan_unpoison+0x21/0x50 do_init_module+0x1d1/0x700 load_module+0x3867/0x5260 ? layout_and_allocate+0x3990/0x3990 ? rcu_read_lock_held_common+0xe/0xb0 ? rcu_read_lock_sched_held+0x62/0xe0 ? rcu_read_lock_bh_held+0xd0/0xd0 ? __vmalloc_node_range+0x46b/0x890 ? lock_release+0x5c8/0xba0 ? alloc_vm_area+0x120/0x120 ? selinux_kernel_module_from_file+0x2a5/0x300 ? __inode_security_revalidate+0xf0/0xf0 ? __do_sys_init_module+0x1db/0x260 __do_sys_init_module+0x1db/0x260 ? load_module+0x5260/0x5260 ? do_syscall_64+0x22/0x450 do_syscall_64+0xa5/0x450 entry_SYSCALL_64_after_hwframe+0x66/0xdb
CVE-2023-53830 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: think-lmi: Fix memory leak when showing current settings When retriving a item string with tlmi_setting(), the result has to be freed using kfree(). In current_value_show() however, malformed item strings are not freed, causing a memory leak. Fix this by eliminating the early return responsible for this.
CVE-2023-53810 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: blk-mq: release crypto keyslot before reporting I/O complete Once all I/O using a blk_crypto_key has completed, filesystems can call blk_crypto_evict_key(). However, the block layer currently doesn't call blk_crypto_put_keyslot() until the request is being freed, which happens after upper layers have been told (via bio_endio()) the I/O has completed. This causes a race condition where blk_crypto_evict_key() can see 'slot_refs != 0' without there being an actual bug. This makes __blk_crypto_evict_key() hit the 'WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)' and return without doing anything, eventually causing a use-after-free in blk_crypto_reprogram_all_keys(). (This is a very rare bug and has only been seen when per-file keys are being used with fscrypt.) There are two options to fix this: either release the keyslot before bio_endio() is called on the request's last bio, or make __blk_crypto_evict_key() ignore slot_refs. Let's go with the first solution, since it preserves the ability to report bugs (via WARN_ON_ONCE) where a key is evicted while still in-use.
CVE-2023-53809 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: l2tp: Avoid possible recursive deadlock in l2tp_tunnel_register() When a file descriptor of pppol2tp socket is passed as file descriptor of UDP socket, a recursive deadlock occurs in l2tp_tunnel_register(). This situation is reproduced by the following program: int main(void) { int sock; struct sockaddr_pppol2tp addr; sock = socket(AF_PPPOX, SOCK_DGRAM, PX_PROTO_OL2TP); if (sock < 0) { perror("socket"); return 1; } addr.sa_family = AF_PPPOX; addr.sa_protocol = PX_PROTO_OL2TP; addr.pppol2tp.pid = 0; addr.pppol2tp.fd = sock; addr.pppol2tp.addr.sin_family = PF_INET; addr.pppol2tp.addr.sin_port = htons(0); addr.pppol2tp.addr.sin_addr.s_addr = inet_addr("192.168.0.1"); addr.pppol2tp.s_tunnel = 1; addr.pppol2tp.s_session = 0; addr.pppol2tp.d_tunnel = 0; addr.pppol2tp.d_session = 0; if (connect(sock, (const struct sockaddr *)&addr, sizeof(addr)) < 0) { perror("connect"); return 1; } return 0; } This program causes the following lockdep warning: ============================================ WARNING: possible recursive locking detected 6.2.0-rc5-00205-gc96618275234 #56 Not tainted -------------------------------------------- repro/8607 is trying to acquire lock: ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: l2tp_tunnel_register+0x2b7/0x11c0 but task is already holding lock: ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: pppol2tp_connect+0xa82/0x1a30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(sk_lock-AF_PPPOX); lock(sk_lock-AF_PPPOX); *** DEADLOCK *** May be due to missing lock nesting notation 1 lock held by repro/8607: #0: ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: pppol2tp_connect+0xa82/0x1a30 stack backtrace: CPU: 0 PID: 8607 Comm: repro Not tainted 6.2.0-rc5-00205-gc96618275234 #56 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x100/0x178 __lock_acquire.cold+0x119/0x3b9 ? lockdep_hardirqs_on_prepare+0x410/0x410 lock_acquire+0x1e0/0x610 ? l2tp_tunnel_register+0x2b7/0x11c0 ? lock_downgrade+0x710/0x710 ? __fget_files+0x283/0x3e0 lock_sock_nested+0x3a/0xf0 ? l2tp_tunnel_register+0x2b7/0x11c0 l2tp_tunnel_register+0x2b7/0x11c0 ? sprintf+0xc4/0x100 ? l2tp_tunnel_del_work+0x6b0/0x6b0 ? debug_object_deactivate+0x320/0x320 ? lockdep_init_map_type+0x16d/0x7a0 ? lockdep_init_map_type+0x16d/0x7a0 ? l2tp_tunnel_create+0x2bf/0x4b0 ? l2tp_tunnel_create+0x3c6/0x4b0 pppol2tp_connect+0x14e1/0x1a30 ? pppol2tp_put_sk+0xd0/0xd0 ? aa_sk_perm+0x2b7/0xa80 ? aa_af_perm+0x260/0x260 ? bpf_lsm_socket_connect+0x9/0x10 ? pppol2tp_put_sk+0xd0/0xd0 __sys_connect_file+0x14f/0x190 __sys_connect+0x133/0x160 ? __sys_connect_file+0x190/0x190 ? lockdep_hardirqs_on+0x7d/0x100 ? ktime_get_coarse_real_ts64+0x1b7/0x200 ? ktime_get_coarse_real_ts64+0x147/0x200 ? __audit_syscall_entry+0x396/0x500 __x64_sys_connect+0x72/0xb0 do_syscall_64+0x38/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd This patch fixes the issue by getting/creating the tunnel before locking the pppol2tp socket.
CVE-2023-53808 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: fix memory leak in mwifiex_histogram_read() Always free the zeroed page on return from 'mwifiex_histogram_read()'.
CVE-2023-53807 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: clocking-wizard: Fix Oops in clk_wzrd_register_divider() Smatch detected this potential error pointer dereference clk_wzrd_register_divider(). If devm_clk_hw_register() fails then it sets "hw" to an error pointer and then dereferences it on the next line. Return the error directly instead.
CVE-2023-53802 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: htc_hst: free skb in ath9k_htc_rx_msg() if there is no callback function It is stated that ath9k_htc_rx_msg() either frees the provided skb or passes its management to another callback function. However, the skb is not freed in case there is no another callback function, and Syzkaller was able to cause a memory leak. Also minor comment fix. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2023-53800 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix use-after-free when volume resizing failed There is an use-after-free problem reported by KASAN: ================================================================== BUG: KASAN: use-after-free in ubi_eba_copy_table+0x11f/0x1c0 [ubi] Read of size 8 at addr ffff888101eec008 by task ubirsvol/4735 CPU: 2 PID: 4735 Comm: ubirsvol Not tainted 6.1.0-rc1-00003-g84fa3304a7fc-dirty #14 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 print_report+0x171/0x472 kasan_report+0xad/0x130 ubi_eba_copy_table+0x11f/0x1c0 [ubi] ubi_resize_volume+0x4f9/0xbc0 [ubi] ubi_cdev_ioctl+0x701/0x1850 [ubi] __x64_sys_ioctl+0x11d/0x170 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> When ubi_change_vtbl_record() returns an error in ubi_resize_volume(), "new_eba_tbl" will be freed on error handing path, but it is holded by "vol->eba_tbl" in ubi_eba_replace_table(). It means that the liftcycle of "vol->eba_tbl" and "vol" are different, so when resizing volume in next time, it causing an use-after-free fault. Fix it by not freeing "new_eba_tbl" after it replaced in ubi_eba_replace_table(), while will be freed in next volume resizing.