| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Permission control vulnerability in the Wi-Fi module. Successful exploitation of this vulnerability may affect service confidentiality. |
| Permission control vulnerability in the Gallery module. Successful exploitation of this vulnerability may affect service confidentiality |
| Permission control vulnerability in the network module. Successful exploitation of this vulnerability may affect service confidentiality. |
| Denial of service (DoS) vulnerability in the office service. Successful exploitation of this vulnerability may affect availability. |
| Denial of service (DoS) vulnerability in the office service. Successful exploitation of this vulnerability may affect availability. |
| Denial of service (DoS) vulnerability in the office service. Successful exploitation of this vulnerability may affect availability. |
| Denial of service (DoS) vulnerability in the office service. Successful exploitation of this vulnerability may affect availability. |
| The issue was resolved by not loading remote images This issue is fixed in iOS 18.6 and iPadOS 18.6. Forwarding an email could display remote images in Mail in Lockdown Mode. |
| Splashin iOS v2.0 fails to enforce server-side interval restrictions for location updates for free-tier users. |
| An issue found in ProcessWire 3.0.210 allows attackers to execute arbitrary code and install a reverse shell via the download_zip_url parameter when installing a new module. NOTE: this is disputed because exploitation requires that the attacker is able to enter requests as an admin; however, a ProcessWire admin is intentionally allowed to install any module that contains any arbitrary code. |
| Meshtastic is an open source mesh networking solution. Prior to v2.6.3, an attacker can send NodeInfo with a empty publicKey first, then overwrite it with a new key. First sending a empty key bypasses 'if (p.public_key.size > 0) {', clearing the existing publicKey (and resetting the size to 0) for a known node. Then a new key bypasses 'if (info->user.public_key.size > 0) {', and this malicious key is stored in NodeDB. This vulnerability is fixed in 2.6.3. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix fault on fd close after unbind
If userspace holds an fd open, unbinds the device and then closes it,
the driver shouldn't try to access the hardware. Protect it by using
drm_dev_enter()/drm_dev_exit(). This fixes the following page fault:
<6> [IGT] xe_wedged: exiting, ret=98
<1> BUG: unable to handle page fault for address: ffffc901bc5e508c
<1> #PF: supervisor read access in kernel mode
<1> #PF: error_code(0x0000) - not-present page
...
<4> xe_lrc_update_timestamp+0x1c/0xd0 [xe]
<4> xe_exec_queue_update_run_ticks+0x50/0xb0 [xe]
<4> xe_exec_queue_fini+0x16/0xb0 [xe]
<4> __guc_exec_queue_fini_async+0xc4/0x190 [xe]
<4> guc_exec_queue_fini_async+0xa0/0xe0 [xe]
<4> guc_exec_queue_fini+0x23/0x40 [xe]
<4> xe_exec_queue_destroy+0xb3/0xf0 [xe]
<4> xe_file_close+0xd4/0x1a0 [xe]
<4> drm_file_free+0x210/0x280 [drm]
<4> drm_close_helper.isra.0+0x6d/0x80 [drm]
<4> drm_release_noglobal+0x20/0x90 [drm]
(cherry picked from commit 4ca1fd418338d4d135428a0eb1e16e3b3ce17ee8) |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: sof_sdw: Add space for a terminator into DAIs array
The code uses the initialised member of the asoc_sdw_dailink struct to
determine if a member of the array is in use. However in the case the
array is completely full this will lead to an access 1 past the end of
the array, expand the array by one entry to include a space for a
terminator. |
| Windows Kernel Elevation of Privilege Vulnerability |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix invalid irq restore in scx_ops_bypass()
While adding outer irqsave/restore locking, 0e7ffff1b811 ("scx: Fix raciness
in scx_ops_bypass()") forgot to convert an inner rq_unlock_irqrestore() to
rq_unlock() which could re-enable IRQ prematurely leading to the following
warning:
raw_local_irq_restore() called with IRQs enabled
WARNING: CPU: 1 PID: 96 at kernel/locking/irqflag-debug.c:10 warn_bogus_irq_restore+0x30/0x40
...
Sched_ext: create_dsq (enabling)
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : warn_bogus_irq_restore+0x30/0x40
lr : warn_bogus_irq_restore+0x30/0x40
...
Call trace:
warn_bogus_irq_restore+0x30/0x40 (P)
warn_bogus_irq_restore+0x30/0x40 (L)
scx_ops_bypass+0x224/0x3b8
scx_ops_enable.isra.0+0x2c8/0xaa8
bpf_scx_reg+0x18/0x30
...
irq event stamp: 33739
hardirqs last enabled at (33739): [<ffff8000800b699c>] scx_ops_bypass+0x174/0x3b8
hardirqs last disabled at (33738): [<ffff800080d48ad4>] _raw_spin_lock_irqsave+0xb4/0xd8
Drop the stray _irqrestore(). |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda-dai: Do not release the link DMA on STOP
The linkDMA should not be released on stop trigger since a stream re-start
might happen without closing of the stream. This leaves a short time for
other streams to 'steal' the linkDMA since it has been released.
This issue is not easy to reproduce under normal conditions as usually
after stop the stream is closed, or the same stream is restarted, but if
another stream got in between the stop and start, like this:
aplay -Dhw:0,3 -c2 -r48000 -fS32_LE /dev/zero -d 120
CTRL+z
aplay -Dhw:0,0 -c2 -r48000 -fS32_LE /dev/zero -d 120
then the link DMA channels will be mixed up, resulting firmware error or
crash. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix corrupt config pages PHY state is switched in sysfs
The driver, through the SAS transport, exposes a sysfs interface to
enable/disable PHYs in a controller/expander setup. When multiple PHYs
are disabled and enabled in rapid succession, the persistent and current
config pages related to SAS IO unit/SAS Expander pages could get
corrupted.
Use separate memory for each config request. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix page fault due to max surface definition mismatch
DC driver is using two different values to define the maximum number of
surfaces: MAX_SURFACES and MAX_SURFACE_NUM. Consolidate MAX_SURFACES as
the unique definition for surface updates across DC.
It fixes page fault faced by Cosmic users on AMD display versions that
support two overlay planes, since the introduction of cursor overlay
mode.
[Nov26 21:33] BUG: unable to handle page fault for address: 0000000051d0f08b
[ +0.000015] #PF: supervisor read access in kernel mode
[ +0.000006] #PF: error_code(0x0000) - not-present page
[ +0.000005] PGD 0 P4D 0
[ +0.000007] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
[ +0.000006] CPU: 4 PID: 71 Comm: kworker/u32:6 Not tainted 6.10.0+ #300
[ +0.000006] Hardware name: Valve Jupiter/Jupiter, BIOS F7A0131 01/30/2024
[ +0.000007] Workqueue: events_unbound commit_work [drm_kms_helper]
[ +0.000040] RIP: 0010:copy_stream_update_to_stream.isra.0+0x30d/0x750 [amdgpu]
[ +0.000847] Code: 8b 10 49 89 94 24 f8 00 00 00 48 8b 50 08 49 89 94 24 00 01 00 00 8b 40 10 41 89 84 24 08 01 00 00 49 8b 45 78 48 85 c0 74 0b <0f> b6 00 41 88 84 24 90 64 00 00 49 8b 45 60 48 85 c0 74 3b 48 8b
[ +0.000010] RSP: 0018:ffffc203802f79a0 EFLAGS: 00010206
[ +0.000009] RAX: 0000000051d0f08b RBX: 0000000000000004 RCX: ffff9f964f0a8070
[ +0.000004] RDX: ffff9f9710f90e40 RSI: ffff9f96600c8000 RDI: ffff9f964f000000
[ +0.000004] RBP: ffffc203802f79f8 R08: 0000000000000000 R09: 0000000000000000
[ +0.000005] R10: 0000000000000000 R11: 0000000000000000 R12: ffff9f96600c8000
[ +0.000004] R13: ffff9f9710f90e40 R14: ffff9f964f000000 R15: ffff9f96600c8000
[ +0.000004] FS: 0000000000000000(0000) GS:ffff9f9970000000(0000) knlGS:0000000000000000
[ +0.000005] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000005] CR2: 0000000051d0f08b CR3: 00000002e6a20000 CR4: 0000000000350ef0
[ +0.000005] Call Trace:
[ +0.000011] <TASK>
[ +0.000010] ? __die_body.cold+0x19/0x27
[ +0.000012] ? page_fault_oops+0x15a/0x2d0
[ +0.000014] ? exc_page_fault+0x7e/0x180
[ +0.000009] ? asm_exc_page_fault+0x26/0x30
[ +0.000013] ? copy_stream_update_to_stream.isra.0+0x30d/0x750 [amdgpu]
[ +0.000739] ? dc_commit_state_no_check+0xd6c/0xe70 [amdgpu]
[ +0.000470] update_planes_and_stream_state+0x49b/0x4f0 [amdgpu]
[ +0.000450] ? srso_return_thunk+0x5/0x5f
[ +0.000009] ? commit_minimal_transition_state+0x239/0x3d0 [amdgpu]
[ +0.000446] update_planes_and_stream_v2+0x24a/0x590 [amdgpu]
[ +0.000464] ? srso_return_thunk+0x5/0x5f
[ +0.000009] ? sort+0x31/0x50
[ +0.000007] ? amdgpu_dm_atomic_commit_tail+0x159f/0x3a30 [amdgpu]
[ +0.000508] ? srso_return_thunk+0x5/0x5f
[ +0.000009] ? amdgpu_crtc_get_scanout_position+0x28/0x40 [amdgpu]
[ +0.000377] ? srso_return_thunk+0x5/0x5f
[ +0.000009] ? drm_crtc_vblank_helper_get_vblank_timestamp_internal+0x160/0x390 [drm]
[ +0.000058] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? dma_fence_default_wait+0x8c/0x260
[ +0.000010] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? wait_for_completion_timeout+0x13b/0x170
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? dma_fence_wait_timeout+0x108/0x140
[ +0.000010] ? commit_tail+0x94/0x130 [drm_kms_helper]
[ +0.000024] ? process_one_work+0x177/0x330
[ +0.000008] ? worker_thread+0x266/0x3a0
[ +0.000006] ? __pfx_worker_thread+0x10/0x10
[ +0.000004] ? kthread+0xd2/0x100
[ +0.000006] ? __pfx_kthread+0x10/0x10
[ +0.000006] ? ret_from_fork+0x34/0x50
[ +0.000004] ? __pfx_kthread+0x10/0x10
[ +0.000005] ? ret_from_fork_asm+0x1a/0x30
[ +0.000011] </TASK>
(cherry picked from commit 1c86c81a86c60f9b15d3e3f43af0363cf56063e7) |
| NVIDIA Riva contains a vulnerability where a user could cause an improper access control issue. A successful exploit of this vulnerability might lead to escalation of privileges, data tampering, denial of service, or information disclosure. |
| NVIDIA Riva contains a vulnerability where a user could cause an improper access control issue. A successful exploit of this vulnerability might lead to data tampering or denial of service. |