| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
memory: pl353-smc: Fix refcount leak bug in pl353_smc_probe()
The break of for_each_available_child_of_node() needs a
corresponding of_node_put() when the reference 'child' is not
used anymore. Here we do not need to call of_node_put() in
fail path as '!match' means no break.
While the of_platform_device_create() will created a new
reference by 'child' but it has considered the refcounting. |
| Missing Authorization vulnerability in ByConsole WooODT Lite allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects WooODT Lite: from n/a through 2.4.6. |
| This vulnerability occurs when the system permits multiple simultaneous
connections to the backend using the same charging station ID. This can
result in unauthorized access, data inconsistency, or potential
manipulation of charging sessions. The lack of proper session management
and expiration control allows attackers to exploit this weakness by
reusing valid charging station IDs to establish multiple sessions
concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix shift-out-of-bounds/overflow in nilfs_sb2_bad_offset()
Patch series "nilfs2: fix UBSAN shift-out-of-bounds warnings on mount
time".
The first patch fixes a bug reported by syzbot, and the second one fixes
the remaining bug of the same kind. Although they are triggered by the
same super block data anomaly, I divided it into the above two because the
details of the issues and how to fix it are different.
Both are required to eliminate the shift-out-of-bounds issues at mount
time.
This patch (of 2):
If the block size exponent information written in an on-disk superblock is
corrupted, nilfs_sb2_bad_offset helper function can trigger
shift-out-of-bounds warning followed by a kernel panic (if panic_on_warn
is set):
shift exponent 38983 is too large for 64-bit type 'unsigned long long'
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:151 [inline]
__ubsan_handle_shift_out_of_bounds+0x33d/0x3b0 lib/ubsan.c:322
nilfs_sb2_bad_offset fs/nilfs2/the_nilfs.c:449 [inline]
nilfs_load_super_block+0xdf5/0xe00 fs/nilfs2/the_nilfs.c:523
init_nilfs+0xb7/0x7d0 fs/nilfs2/the_nilfs.c:577
nilfs_fill_super+0xb1/0x5d0 fs/nilfs2/super.c:1047
nilfs_mount+0x613/0x9b0 fs/nilfs2/super.c:1317
...
In addition, since nilfs_sb2_bad_offset() performs multiplication without
considering the upper bound, the computation may overflow if the disk
layout parameters are not normal.
This fixes these issues by inserting preliminary sanity checks for those
parameters and by converting the comparison from one involving
multiplication and left bit-shifting to one using division and right
bit-shifting. |
| An attacker could decrypt sensitive data, impersonate legitimate users
or devices, and potentially gain access to network resources for lateral
attacks. |
| Missing Authorization vulnerability in Repute InfoSystems ARMember Premium allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects ARMember Premium: from n/a through 5.9.2. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in WPDeveloper Typing Text allows Stored XSS.This issue affects Typing Text: from n/a through 1.2.7. |
| Server-Side Request Forgery (SSRF) vulnerability in HasThemes Extensions For CF7 allows Server Side Request Forgery. This issue affects Extensions For CF7: from n/a through 3.2.0. |
| In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Fix memory leak in tb_handle_dp_bandwidth_request()
The memory allocated in tb_queue_dp_bandwidth_request() needs to be
released once the request is handled to avoid leaking it. |
| In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: Fix leak in devfreq_dev_release()
srcu_init_notifier_head() allocates resources that need to be released
with a srcu_cleanup_notifier_head() call.
Reported by kmemleak. |
| In the Linux kernel, the following vulnerability has been resolved:
gpu: host1x: Fix memory leak of device names
The device names allocated by dev_set_name() need be freed
before module unloading, but they can not be freed because
the kobject's refcount which was set in device_initialize()
has not be decreased to 0.
As comment of device_add() says, if it fails, use only
put_device() drop the refcount, then the name will be
freed in kobejct_cleanup().
device_del() and put_device() can be replaced with
device_unregister(), so call it to unregister the added
successfully devices, and just call put_device() to the
not added device.
Add a release() function to device to avoid null release()
function WARNING in device_release(), it's empty, because
the context devices are freed together in
host1x_memory_context_list_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpt3sas: Fix a memory leak
Add a forgotten kfree(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: Fix memory leak in rtw88_usb
Kmemleak shows the following leak arising from routine in the usb
probe routine:
unreferenced object 0xffff895cb29bba00 (size 512):
comm "(udev-worker)", pid 534, jiffies 4294903932 (age 102751.088s)
hex dump (first 32 bytes):
77 30 30 30 00 00 00 00 02 2f 2d 2b 30 00 00 00 w000...../-+0...
02 00 2a 28 00 00 00 00 ff 55 ff ff ff 00 00 00 ..*(.....U......
backtrace:
[<ffffffff9265fa36>] kmalloc_trace+0x26/0x90
[<ffffffffc17eec41>] rtw_usb_probe+0x2f1/0x680 [rtw_usb]
[<ffffffffc03e19fd>] usb_probe_interface+0xdd/0x2e0 [usbcore]
[<ffffffff92b4f2fe>] really_probe+0x18e/0x3d0
[<ffffffff92b4f5b8>] __driver_probe_device+0x78/0x160
[<ffffffff92b4f6bf>] driver_probe_device+0x1f/0x90
[<ffffffff92b4f8df>] __driver_attach+0xbf/0x1b0
[<ffffffff92b4d350>] bus_for_each_dev+0x70/0xc0
[<ffffffff92b4e51e>] bus_add_driver+0x10e/0x210
[<ffffffff92b50935>] driver_register+0x55/0xf0
[<ffffffffc03e0708>] usb_register_driver+0x88/0x140 [usbcore]
[<ffffffff92401153>] do_one_initcall+0x43/0x210
[<ffffffff9254f42a>] do_init_module+0x4a/0x200
[<ffffffff92551d1c>] __do_sys_finit_module+0xac/0x120
[<ffffffff92ee6626>] do_syscall_64+0x56/0x80
[<ffffffff9300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
The leak was verified to be real by unloading the driver, which resulted
in a dangling pointer to the allocation.
The allocated memory is freed in rtw_usb_intf_deinit(). |
| Runtipi is a Docker-based, personal homeserver orchestrator that facilitates multiple services on a single server. Versions 3.7.0 and above allow an authenticated user to execute arbitrary system commands on the host server by injecting shell metacharacters into backup filenames. The BackupManager fails to sanitize the filenames of uploaded backups. The system persists user-uploaded files directly to the host filesystem using the raw originalname provided in the request. This allows an attacker to stage a file containing shell metacharacters (e.g., $(id).tar.gz) at a predictable path, which is later referenced during the restore process. The successful storage of the file is what allows the subsequent restore command to reference and execute it. This issue has been fixed in version 4.7.0. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential memory leaks
When the driver hits -ENOMEM at allocating a URB or a buffer, it
aborts and goes to the error path that releases the all previously
allocated resources. However, when -ENOMEM hits at the middle of the
sync EP URB allocation loop, the partially allocated URBs might be
left without released, because ep->nurbs is still zero at that point.
Fix it by setting ep->nurbs at first, so that the error handler loops
over the full URB list. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd: fix potential memory leak
This patch fix potential memory leak (clk_src) when function run
into last return NULL.
s/free/kfree/ - Alex |
| An authentication weakness was identified in Omada Controllers, Gateways and Access Points, controller-device adoption due to improper handling of random values. Exploitation requires advanced network positioning and allows an attacker to intercept adoption traffic and forge valid authentication through offline precomputation, potentially exposing sensitive information and compromising confidentiality. |
| An Allocation of Resources Without Limits or Throttling vulnerability in the PFE management daemon (evo-pfemand) of Juniper Networks Junos OS Evolved allows an authenticated, network-based attacker to cause an FPC crash leading to a Denial of Service (DoS).When specific SNMP GET operations or specific low-priviledged CLI commands are executed, a GUID resource leak will occur, eventually leading to exhaustion and resulting in FPCs to hang. Affected FPCs need to be manually restarted to recover.
GUID exhaustion will trigger a syslog message like one of the following:
evo-pfemand[<pid>]: get_next_guid: Ran out of Guid Space ...
evo-aftmand-zx[<pid>]: get_next_guid: Ran out of Guid Space ...
The leak can be monitored by running the following command and taking note of the values in the rightmost column labeled Guids:
user@host> show platform application-info allocations app evo-pfemand/evo-pfemand
In case one or more of these values are constantly increasing the leak is happening.
This issue affects Junos OS Evolved:
* All versions before 21.4R3-S7-EVO,
* 22.1 versions before 22.1R3-S6-EVO,
* 22.2 versions before 22.2R3-EVO,
* 22.3 versions before 22.3R3-EVO,
* 22.4 versions before 22.4R2-EVO.
Please note that this issue is similar to, but different from CVE-2024-47508 and CVE-2024-47509. |
| Moonraker is a Python web server providing API access to Klipper 3D printing firmware. In versions 0.9.3 and below, instances configured with the "ldap" component enabled are vulnerable to LDAP search filter injection techniques via the login endpoint. The 401 error response message can be used to determine whether or not a search was successful, allowing for brute force methods to discover LDAP entries on the server such as user IDs and user attributes. This issue has been fixed in version 0.10.0. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tcp: Fix a NULL pointer dereference when using TCP-AO with TCP_REPAIR
A NULL pointer dereference can occur in tcp_ao_finish_connect() during a
connect() system call on a socket with a TCP-AO key added and TCP_REPAIR
enabled.
The function is called with skb being NULL and attempts to dereference it
on tcp_hdr(skb)->seq without a prior skb validation.
Fix this by checking if skb is NULL before dereferencing it.
The commentary is taken from bpf_skops_established(), which is also called
in the same flow. Unlike the function being patched,
bpf_skops_established() validates the skb before dereferencing it.
int main(void){
struct sockaddr_in sockaddr;
struct tcp_ao_add tcp_ao;
int sk;
int one = 1;
memset(&sockaddr,'\0',sizeof(sockaddr));
memset(&tcp_ao,'\0',sizeof(tcp_ao));
sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
sockaddr.sin_family = AF_INET;
memcpy(tcp_ao.alg_name,"cmac(aes128)",12);
memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16);
tcp_ao.keylen = 16;
memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr));
setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao,
sizeof(tcp_ao));
setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one));
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htobe16(123);
inet_aton("127.0.0.1", &sockaddr.sin_addr);
connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr));
return 0;
}
$ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall
$ unshare -Urn
BUG: kernel NULL pointer dereference, address: 00000000000000b6
PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0
Oops: Oops: 0000 [#1] SMP NOPTI
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop
Reference Platform, BIOS 6.00 11/12/2020
RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) |