| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Fix race between namespace cleanup and gc in the list:set type
Lion Ackermann reported that there is a race condition between namespace cleanup
in ipset and the garbage collection of the list:set type. The namespace
cleanup can destroy the list:set type of sets while the gc of the set type is
waiting to run in rcu cleanup. The latter uses data from the destroyed set which
thus leads use after free. The patch contains the following parts:
- When destroying all sets, first remove the garbage collectors, then wait
if needed and then destroy the sets.
- Fix the badly ordered "wait then remove gc" for the destroy a single set
case.
- Fix the missing rcu locking in the list:set type in the userspace test
case.
- Use proper RCU list handlings in the list:set type.
The patch depends on c1193d9bbbd3 (netfilter: ipset: Add list flush to cancel_gc). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memory-failure: fix handling of dissolved but not taken off from buddy pages
When I did memory failure tests recently, below panic occurs:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00
flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff)
raw: 06fffe0000000000 dead000000000100 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000009 00000000ffffffff 0000000000000000
page dumped because: VM_BUG_ON_PAGE(!PageBuddy(page))
------------[ cut here ]------------
kernel BUG at include/linux/page-flags.h:1009!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:__del_page_from_free_list+0x151/0x180
RSP: 0018:ffffa49c90437998 EFLAGS: 00000046
RAX: 0000000000000035 RBX: 0000000000000009 RCX: ffff8dd8dfd1c9c8
RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff8dd8dfd1c9c0
RBP: ffffd901233b8000 R08: ffffffffab5511f8 R09: 0000000000008c69
R10: 0000000000003c15 R11: ffffffffab5511f8 R12: ffff8dd8fffc0c80
R13: 0000000000000001 R14: ffff8dd8fffc0c80 R15: 0000000000000009
FS: 00007ff916304740(0000) GS:ffff8dd8dfd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055eae50124c8 CR3: 00000008479e0000 CR4: 00000000000006f0
Call Trace:
<TASK>
__rmqueue_pcplist+0x23b/0x520
get_page_from_freelist+0x26b/0xe40
__alloc_pages_noprof+0x113/0x1120
__folio_alloc_noprof+0x11/0xb0
alloc_buddy_hugetlb_folio.isra.0+0x5a/0x130
__alloc_fresh_hugetlb_folio+0xe7/0x140
alloc_pool_huge_folio+0x68/0x100
set_max_huge_pages+0x13d/0x340
hugetlb_sysctl_handler_common+0xe8/0x110
proc_sys_call_handler+0x194/0x280
vfs_write+0x387/0x550
ksys_write+0x64/0xe0
do_syscall_64+0xc2/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff916114887
RSP: 002b:00007ffec8a2fd78 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000055eae500e350 RCX: 00007ff916114887
RDX: 0000000000000004 RSI: 000055eae500e390 RDI: 0000000000000003
RBP: 000055eae50104c0 R08: 0000000000000000 R09: 000055eae50104c0
R10: 0000000000000077 R11: 0000000000000246 R12: 0000000000000004
R13: 0000000000000004 R14: 00007ff916216b80 R15: 00007ff916216a00
</TASK>
Modules linked in: mce_inject hwpoison_inject
---[ end trace 0000000000000000 ]---
And before the panic, there had an warning about bad page state:
BUG: Bad page state in process page-types pfn:8cee00
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00
flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff)
page_type: 0xffffff7f(buddy)
raw: 06fffe0000000000 ffffd901241c0008 ffffd901240f8008 0000000000000000
raw: 0000000000000000 0000000000000009 00000000ffffff7f 0000000000000000
page dumped because: nonzero mapcount
Modules linked in: mce_inject hwpoison_inject
CPU: 8 PID: 154211 Comm: page-types Not tainted 6.9.0-rc4-00499-g5544ec3178e2-dirty #22
Call Trace:
<TASK>
dump_stack_lvl+0x83/0xa0
bad_page+0x63/0xf0
free_unref_page+0x36e/0x5c0
unpoison_memory+0x50b/0x630
simple_attr_write_xsigned.constprop.0.isra.0+0xb3/0x110
debugfs_attr_write+0x42/0x60
full_proxy_write+0x5b/0x80
vfs_write+0xcd/0x550
ksys_write+0x64/0xe0
do_syscall_64+0xc2/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f189a514887
RSP: 002b:00007ffdcd899718 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f189a514887
RDX: 0000000000000009 RSI: 00007ffdcd899730 RDI: 0000000000000003
RBP: 00007ffdcd8997a0 R08: 0000000000000000 R09: 00007ffdcd8994b2
R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffdcda199a8
R13: 0000000000404af1 R14: 000000000040ad78 R15: 00007f189a7a5040
</TASK>
The root cause should be the below race:
memory_failure
try_memory_failure_hugetlb
me_huge_page
__page_handle_poison
dissolve_free_hugetlb_folio
drain_all_pages -- Buddy page can be isolated e.g. for compaction.
take_page_off_buddy -- Failed as page is not in the
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_fs: Fix race between aio_cancel() and AIO request complete
FFS based applications can utilize the aio_cancel() callback to dequeue
pending USB requests submitted to the UDC. There is a scenario where the
FFS application issues an AIO cancel call, while the UDC is handling a
soft disconnect. For a DWC3 based implementation, the callstack looks
like the following:
DWC3 Gadget FFS Application
dwc3_gadget_soft_disconnect() ...
--> dwc3_stop_active_transfers()
--> dwc3_gadget_giveback(-ESHUTDOWN)
--> ffs_epfile_async_io_complete() ffs_aio_cancel()
--> usb_ep_free_request() --> usb_ep_dequeue()
There is currently no locking implemented between the AIO completion
handler and AIO cancel, so the issue occurs if the completion routine is
running in parallel to an AIO cancel call coming from the FFS application.
As the completion call frees the USB request (io_data->req) the FFS
application is also referencing it for the usb_ep_dequeue() call. This can
lead to accessing a stale/hanging pointer.
commit b566d38857fc ("usb: gadget: f_fs: use io_data->status consistently")
relocated the usb_ep_free_request() into ffs_epfile_async_io_complete().
However, in order to properly implement locking to mitigate this issue, the
spinlock can't be added to ffs_epfile_async_io_complete(), as
usb_ep_dequeue() (if successfully dequeuing a USB request) will call the
function driver's completion handler in the same context. Hence, leading
into a deadlock.
Fix this issue by moving the usb_ep_free_request() back to
ffs_user_copy_worker(), and ensuring that it explicitly sets io_data->req
to NULL after freeing it within the ffs->eps_lock. This resolves the race
condition above, as the ffs_aio_cancel() routine will not continue
attempting to dequeue a request that has already been freed, or the
ffs_user_copy_work() not freeing the USB request until the AIO cancel is
done referencing it.
This fix depends on
commit b566d38857fc ("usb: gadget: f_fs: use io_data->status
consistently") |
| Race condition in Seamless Firmware Updates for some Intel(R) reference platforms may allow a privileged user to potentially enable denial of service via local access. |
| A defect was discovered in the Python “ssl” module where there is a memory
race condition with the ssl.SSLContext methods “cert_store_stats()” and
“get_ca_certs()”. The race condition can be triggered if the methods are
called at the same time as certificates are loaded into the SSLContext,
such as during the TLS handshake with a certificate directory configured.
This issue is fixed in CPython 3.10.14, 3.11.9, 3.12.3, and 3.13.0a5. |
| In Eclipse OpenJ9 before version 0.41.0, the JVM can be forced into an infinite busy hang on a spinlock or a segmentation fault if a shutdown signal (SIGTERM, SIGINT or SIGHUP) is received before the JVM has finished initializing.
|
| A race condition in UEFI firmware for some Intel(R) processors may allow a privileged user to potentially enable escalation of privilege via local access. |
| An issue was discovered in drivers/bluetooth/hci_ldisc.c in the Linux kernel 6.2. In hci_uart_tty_ioctl, there is a race condition between HCIUARTSETPROTO and HCIUARTGETPROTO. HCI_UART_PROTO_SET is set before hu->proto is set. A NULL pointer dereference may occur. |
| An issue was discovered in the Linux kernel through 6.0.9. drivers/char/xillybus/xillyusb.c has a race condition and use-after-free during physical removal of a USB device. |
| A race condition was addressed with additional validation. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. An app may be able to access user-sensitive data. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Assign job pointer to NULL before signaling the fence
In commit e4b5ccd392b9 ("drm/v3d: Ensure job pointer is set to NULL
after job completion"), we introduced a change to assign the job pointer
to NULL after completing a job, indicating job completion.
However, this approach created a race condition between the DRM
scheduler workqueue and the IRQ execution thread. As soon as the fence is
signaled in the IRQ execution thread, a new job starts to be executed.
This results in a race condition where the IRQ execution thread sets the
job pointer to NULL simultaneously as the `run_job()` function assigns
a new job to the pointer.
This race condition can lead to a NULL pointer dereference if the IRQ
execution thread sets the job pointer to NULL after `run_job()` assigns
it to the new job. When the new job completes and the GPU emits an
interrupt, `v3d_irq()` is triggered, potentially causing a crash.
[ 466.310099] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000c0
[ 466.318928] Mem abort info:
[ 466.321723] ESR = 0x0000000096000005
[ 466.325479] EC = 0x25: DABT (current EL), IL = 32 bits
[ 466.330807] SET = 0, FnV = 0
[ 466.333864] EA = 0, S1PTW = 0
[ 466.337010] FSC = 0x05: level 1 translation fault
[ 466.341900] Data abort info:
[ 466.344783] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 466.350285] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 466.355350] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 466.360677] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000089772000
[ 466.367140] [00000000000000c0] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
[ 466.375875] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
[ 466.382163] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device algif_hash algif_skcipher af_alg bnep binfmt_misc vc4 snd_soc_hdmi_codec drm_display_helper cec brcmfmac_wcc spidev rpivid_hevc(C) drm_client_lib brcmfmac hci_uart drm_dma_helper pisp_be btbcm brcmutil snd_soc_core aes_ce_blk v4l2_mem2mem bluetooth aes_ce_cipher snd_compress videobuf2_dma_contig ghash_ce cfg80211 gf128mul snd_pcm_dmaengine videobuf2_memops ecdh_generic sha2_ce ecc videobuf2_v4l2 snd_pcm v3d sha256_arm64 rfkill videodev snd_timer sha1_ce libaes gpu_sched snd videobuf2_common sha1_generic drm_shmem_helper mc rp1_pio drm_kms_helper raspberrypi_hwmon spi_bcm2835 gpio_keys i2c_brcmstb rp1 raspberrypi_gpiomem rp1_mailbox rp1_adc nvmem_rmem uio_pdrv_genirq uio i2c_dev drm ledtrig_pattern drm_panel_orientation_quirks backlight fuse dm_mod ip_tables x_tables ipv6
[ 466.458429] CPU: 0 UID: 1000 PID: 2008 Comm: chromium Tainted: G C 6.13.0-v8+ #18
[ 466.467336] Tainted: [C]=CRAP
[ 466.470306] Hardware name: Raspberry Pi 5 Model B Rev 1.0 (DT)
[ 466.476157] pstate: 404000c9 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 466.483143] pc : v3d_irq+0x118/0x2e0 [v3d]
[ 466.487258] lr : __handle_irq_event_percpu+0x60/0x228
[ 466.492327] sp : ffffffc080003ea0
[ 466.495646] x29: ffffffc080003ea0 x28: ffffff80c0c94200 x27: 0000000000000000
[ 466.502807] x26: ffffffd08dd81d7b x25: ffffff80c0c94200 x24: ffffff8003bdc200
[ 466.509969] x23: 0000000000000001 x22: 00000000000000a7 x21: 0000000000000000
[ 466.517130] x20: ffffff8041bb0000 x19: 0000000000000001 x18: 0000000000000000
[ 466.524291] x17: ffffffafadfb0000 x16: ffffffc080000000 x15: 0000000000000000
[ 466.531452] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
[ 466.538613] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffffd08c527eb0
[ 466.545777] x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
[ 466.552941] x5 : ffffffd08c4100d0 x4 : ffffffafadfb0000 x3 : ffffffc080003f70
[ 466.560102] x2 : ffffffc0829e8058 x1 : 0000000000000001 x0 : 0000000000000000
[ 466.567263] Call trace:
[ 466.569711] v3d_irq+0x118/0x2e0 [v3d] (P)
[ 466.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/eventfd: ensure io_eventfd_signal() defers another RCU period
io_eventfd_do_signal() is invoked from an RCU callback, but when
dropping the reference to the io_ev_fd, it calls io_eventfd_free()
directly if the refcount drops to zero. This isn't correct, as any
potential freeing of the io_ev_fd should be deferred another RCU grace
period.
Just call io_eventfd_put() rather than open-code the dec-and-test and
free, which will correctly defer it another RCU grace period. |
| A race condition could have led to private browsing tabs being opened in normal browsing windows. This could have resulted in a potential privacy leak. This vulnerability affects Firefox < 135, Firefox ESR < 128.7, Thunderbird < 128.7, and Thunderbird < 135. |
| In the Linux kernel, the following vulnerability has been resolved:
topology: Keep the cpumask unchanged when printing cpumap
During fuzz testing, the following warning was discovered:
different return values (15 and 11) from vsnprintf("%*pbl
", ...)
test:keyward is WARNING in kvasprintf
WARNING: CPU: 55 PID: 1168477 at lib/kasprintf.c:30 kvasprintf+0x121/0x130
Call Trace:
kvasprintf+0x121/0x130
kasprintf+0xa6/0xe0
bitmap_print_to_buf+0x89/0x100
core_siblings_list_read+0x7e/0xb0
kernfs_file_read_iter+0x15b/0x270
new_sync_read+0x153/0x260
vfs_read+0x215/0x290
ksys_read+0xb9/0x160
do_syscall_64+0x56/0x100
entry_SYSCALL_64_after_hwframe+0x78/0xe2
The call trace shows that kvasprintf() reported this warning during the
printing of core_siblings_list. kvasprintf() has several steps:
(1) First, calculate the length of the resulting formatted string.
(2) Allocate a buffer based on the returned length.
(3) Then, perform the actual string formatting.
(4) Check whether the lengths of the formatted strings returned in
steps (1) and (2) are consistent.
If the core_cpumask is modified between steps (1) and (3), the lengths
obtained in these two steps may not match. Indeed our test includes cpu
hotplugging, which should modify core_cpumask while printing.
To fix this issue, cache the cpumask into a temporary variable before
calling cpumap_print_{list, cpumask}_to_buf(), to keep it unchanged
during the printing process. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_fs: Remove WARN_ON in functionfs_bind
This commit addresses an issue related to below kernel panic where
panic_on_warn is enabled. It is caused by the unnecessary use of WARN_ON
in functionsfs_bind, which easily leads to the following scenarios.
1.adb_write in adbd 2. UDC write via configfs
================= =====================
->usb_ffs_open_thread() ->UDC write
->open_functionfs() ->configfs_write_iter()
->adb_open() ->gadget_dev_desc_UDC_store()
->adb_write() ->usb_gadget_register_driver_owner
->driver_register()
->StartMonitor() ->bus_add_driver()
->adb_read() ->gadget_bind_driver()
<times-out without BIND event> ->configfs_composite_bind()
->usb_add_function()
->open_functionfs() ->ffs_func_bind()
->adb_open() ->functionfs_bind()
<ffs->state !=FFS_ACTIVE>
The adb_open, adb_read, and adb_write operations are invoked from the
daemon, but trying to bind the function is a process that is invoked by
UDC write through configfs, which opens up the possibility of a race
condition between the two paths. In this race scenario, the kernel panic
occurs due to the WARN_ON from functionfs_bind when panic_on_warn is
enabled. This commit fixes the kernel panic by removing the unnecessary
WARN_ON.
Kernel panic - not syncing: kernel: panic_on_warn set ...
[ 14.542395] Call trace:
[ 14.542464] ffs_func_bind+0x1c8/0x14a8
[ 14.542468] usb_add_function+0xcc/0x1f0
[ 14.542473] configfs_composite_bind+0x468/0x588
[ 14.542478] gadget_bind_driver+0x108/0x27c
[ 14.542483] really_probe+0x190/0x374
[ 14.542488] __driver_probe_device+0xa0/0x12c
[ 14.542492] driver_probe_device+0x3c/0x220
[ 14.542498] __driver_attach+0x11c/0x1fc
[ 14.542502] bus_for_each_dev+0x104/0x160
[ 14.542506] driver_attach+0x24/0x34
[ 14.542510] bus_add_driver+0x154/0x270
[ 14.542514] driver_register+0x68/0x104
[ 14.542518] usb_gadget_register_driver_owner+0x48/0xf4
[ 14.542523] gadget_dev_desc_UDC_store+0xf8/0x144
[ 14.542526] configfs_write_iter+0xf0/0x138 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Fix resetting msg rx state after topology removal
If the MST topology is removed during the reception of an MST down reply
or MST up request sideband message, the
drm_dp_mst_topology_mgr::up_req_recv/down_rep_recv states could be reset
from one thread via drm_dp_mst_topology_mgr_set_mst(false), racing with
the reading/parsing of the message from another thread via
drm_dp_mst_handle_down_rep() or drm_dp_mst_handle_up_req(). The race is
possible since the reader/parser doesn't hold any lock while accessing
the reception state. This in turn can lead to a memory corruption in the
reader/parser as described by commit bd2fccac61b4 ("drm/dp_mst: Fix MST
sideband message body length check").
Fix the above by resetting the message reception state if needed before
reading/parsing a message. Another solution would be to hold the
drm_dp_mst_topology_mgr::lock for the whole duration of the message
reception/parsing in drm_dp_mst_handle_down_rep() and
drm_dp_mst_handle_up_req(), however this would require a bigger change.
Since the fix is also needed for stable, opting for the simpler solution
in this patch. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: check if iowq is killed before queuing
task work can be executed after the task has gone through io_uring
termination, whether it's the final task_work run or the fallback path.
In this case, task work will find ->io_wq being already killed and
null'ed, which is a problem if it then tries to forward the request to
io_queue_iowq(). Make io_queue_iowq() fail requests in this case.
Note that it also checks PF_KTHREAD, because the user can first close
a DEFER_TASKRUN ring and shortly after kill the task, in which case
->iowq check would race. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix race between element replace and close()
Element replace (with a socket different from the one stored) may race
with socket's close() link popping & unlinking. __sock_map_delete()
unconditionally unrefs the (wrong) element:
// set map[0] = s0
map_update_elem(map, 0, s0)
// drop fd of s0
close(s0)
sock_map_close()
lock_sock(sk) (s0!)
sock_map_remove_links(sk)
link = sk_psock_link_pop()
sock_map_unlink(sk, link)
sock_map_delete_from_link
// replace map[0] with s1
map_update_elem(map, 0, s1)
sock_map_update_elem
(s1!) lock_sock(sk)
sock_map_update_common
psock = sk_psock(sk)
spin_lock(&stab->lock)
osk = stab->sks[idx]
sock_map_add_link(..., &stab->sks[idx])
sock_map_unref(osk, &stab->sks[idx])
psock = sk_psock(osk)
sk_psock_put(sk, psock)
if (refcount_dec_and_test(&psock))
sk_psock_drop(sk, psock)
spin_unlock(&stab->lock)
unlock_sock(sk)
__sock_map_delete
spin_lock(&stab->lock)
sk = *psk // s1 replaced s0; sk == s1
if (!sk_test || sk_test == sk) // sk_test (s0) != sk (s1); no branch
sk = xchg(psk, NULL)
if (sk)
sock_map_unref(sk, psk) // unref s1; sks[idx] will dangle
psock = sk_psock(sk)
sk_psock_put(sk, psock)
if (refcount_dec_and_test())
sk_psock_drop(sk, psock)
spin_unlock(&stab->lock)
release_sock(sk)
Then close(map) enqueues bpf_map_free_deferred, which finally calls
sock_map_free(). This results in some refcount_t warnings along with
a KASAN splat [1].
Fix __sock_map_delete(), do not allow sock_map_unref() on elements that
may have been replaced.
[1]:
BUG: KASAN: slab-use-after-free in sock_map_free+0x10e/0x330
Write of size 4 at addr ffff88811f5b9100 by task kworker/u64:12/1063
CPU: 14 UID: 0 PID: 1063 Comm: kworker/u64:12 Not tainted 6.12.0+ #125
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
Workqueue: events_unbound bpf_map_free_deferred
Call Trace:
<TASK>
dump_stack_lvl+0x68/0x90
print_report+0x174/0x4f6
kasan_report+0xb9/0x190
kasan_check_range+0x10f/0x1e0
sock_map_free+0x10e/0x330
bpf_map_free_deferred+0x173/0x320
process_one_work+0x846/0x1420
worker_thread+0x5b3/0xf80
kthread+0x29e/0x360
ret_from_fork+0x2d/0x70
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 1202:
kasan_save_stack+0x1e/0x40
kasan_save_track+0x10/0x30
__kasan_slab_alloc+0x85/0x90
kmem_cache_alloc_noprof+0x131/0x450
sk_prot_alloc+0x5b/0x220
sk_alloc+0x2c/0x870
unix_create1+0x88/0x8a0
unix_create+0xc5/0x180
__sock_create+0x241/0x650
__sys_socketpair+0x1ce/0x420
__x64_sys_socketpair+0x92/0x100
do_syscall_64+0x93/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 46:
kasan_save_stack+0x1e/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kmem_cache_free+0x1a1/0x590
__sk_destruct+0x388/0x5a0
sk_psock_destroy+0x73e/0xa50
process_one_work+0x846/0x1420
worker_thread+0x5b3/0xf80
kthread+0x29e/0x360
ret_from_fork+0x2d/0x70
ret_from_fork_asm+0x1a/0x30
The bu
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Hold module reference while requesting a module
User space may unload ip_set.ko while it is itself requesting a set type
backend module, leading to a kernel crash. The race condition may be
provoked by inserting an mdelay() right after the nfnl_unlock() call. |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: tc358743: Fix crash in the probe error path when using polling
If an error occurs in the probe() function, we should remove the polling
timer that was alarmed earlier, otherwise the timer is called with
arguments that are already freed, which results in a crash.
------------[ cut here ]------------
WARNING: CPU: 3 PID: 0 at kernel/time/timer.c:1830 __run_timers+0x244/0x268
Modules linked in:
CPU: 3 UID: 0 PID: 0 Comm: swapper/3 Not tainted 6.11.0 #226
Hardware name: Diasom DS-RK3568-SOM-EVB (DT)
pstate: 804000c9 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __run_timers+0x244/0x268
lr : __run_timers+0x1d4/0x268
sp : ffffff80eff2baf0
x29: ffffff80eff2bb50 x28: 7fffffffffffffff x27: ffffff80eff2bb00
x26: ffffffc080f669c0 x25: ffffff80efef6bf0 x24: ffffff80eff2bb00
x23: 0000000000000000 x22: dead000000000122 x21: 0000000000000000
x20: ffffff80efef6b80 x19: ffffff80041c8bf8 x18: ffffffffffffffff
x17: ffffffc06f146000 x16: ffffff80eff27dc0 x15: 000000000000003e
x14: 0000000000000000 x13: 00000000000054da x12: 0000000000000000
x11: 00000000000639c0 x10: 000000000000000c x9 : 0000000000000009
x8 : ffffff80eff2cb40 x7 : ffffff80eff2cb40 x6 : ffffff8002bee480
x5 : ffffffc080cb2220 x4 : ffffffc080cb2150 x3 : 00000000000f4240
x2 : 0000000000000102 x1 : ffffff80eff2bb00 x0 : ffffff80041c8bf0
Call trace:
__run_timers+0x244/0x268
timer_expire_remote+0x50/0x68
tmigr_handle_remote+0x388/0x39c
run_timer_softirq+0x38/0x44
handle_softirqs+0x138/0x298
__do_softirq+0x14/0x20
____do_softirq+0x10/0x1c
call_on_irq_stack+0x24/0x4c
do_softirq_own_stack+0x1c/0x2c
irq_exit_rcu+0x9c/0xcc
el1_interrupt+0x48/0xc0
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x7c/0x80
default_idle_call+0x34/0x68
do_idle+0x23c/0x294
cpu_startup_entry+0x38/0x3c
secondary_start_kernel+0x128/0x160
__secondary_switched+0xb8/0xbc
---[ end trace 0000000000000000 ]--- |