| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: quirks: Add quirk for 2 Chicony Electronics HP 5MP Cameras
The Chicony Electronics HP 5MP Cameras (USB ID 04F2:B824 & 04F2:B82C)
report a HID sensor interface that is not actually implemented.
Attempting to access this non-functional sensor via iio_info causes
system hangs as runtime PM tries to wake up an unresponsive sensor.
Add these 2 devices to the HID ignore list since the sensor interface is
non-functional by design and should not be exposed to userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/imagination: Fix kernel crash when hard resetting the GPU
The GPU hard reset sequence calls pm_runtime_force_suspend() and
pm_runtime_force_resume(), which according to their documentation should
only be used during system-wide PM transitions to sleep states.
The main issue though is that depending on some internal runtime PM
state as seen by pm_runtime_force_suspend() (whether the usage count is
<= 1), pm_runtime_force_resume() might not resume the device unless
needed. If that happens, the runtime PM resume callback
pvr_power_device_resume() is not called, the GPU clocks are not
re-enabled, and the kernel crashes on the next attempt to access GPU
registers as part of the power-on sequence.
Replace calls to pm_runtime_force_suspend() and
pm_runtime_force_resume() with direct calls to the driver's runtime PM
callbacks, pvr_power_device_suspend() and pvr_power_device_resume(),
to ensure clocks are re-enabled and avoid the kernel crash. |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix oops due to non-existence of prealloc backlog struct
If an AF_RXRPC service socket is opened and bound, but calls are
preallocated, then rxrpc_alloc_incoming_call() will oops because the
rxrpc_backlog struct doesn't get allocated until the first preallocation is
made.
Fix this by returning NULL from rxrpc_alloc_incoming_call() if there is no
backlog struct. This will cause the incoming call to be aborted. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion when building free space tree
When building the free space tree with the block group tree feature
enabled, we can hit an assertion failure like this:
BTRFS info (device loop0 state M): rebuilding free space tree
assertion failed: ret == 0, in fs/btrfs/free-space-tree.c:1102
------------[ cut here ]------------
kernel BUG at fs/btrfs/free-space-tree.c:1102!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
Modules linked in:
CPU: 1 UID: 0 PID: 6592 Comm: syz-executor322 Not tainted 6.15.0-rc7-syzkaller-gd7fa1af5b33e #0 PREEMPT
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102
lr : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102
sp : ffff8000a4ce7600
x29: ffff8000a4ce76e0 x28: ffff0000c9bc6000 x27: ffff0000ddfff3d8
x26: ffff0000ddfff378 x25: dfff800000000000 x24: 0000000000000001
x23: ffff8000a4ce7660 x22: ffff70001499cecc x21: ffff0000e1d8c160
x20: ffff0000e1cb7800 x19: ffff0000e1d8c0b0 x18: 00000000ffffffff
x17: ffff800092f39000 x16: ffff80008ad27e48 x15: ffff700011e740c0
x14: 1ffff00011e740c0 x13: 0000000000000004 x12: ffffffffffffffff
x11: ffff700011e740c0 x10: 0000000000ff0100 x9 : 94ef24f55d2dbc00
x8 : 94ef24f55d2dbc00 x7 : 0000000000000001 x6 : 0000000000000001
x5 : ffff8000a4ce6f98 x4 : ffff80008f415ba0 x3 : ffff800080548ef0
x2 : 0000000000000000 x1 : 0000000100000000 x0 : 000000000000003e
Call trace:
populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 (P)
btrfs_rebuild_free_space_tree+0x14c/0x54c fs/btrfs/free-space-tree.c:1337
btrfs_start_pre_rw_mount+0xa78/0xe10 fs/btrfs/disk-io.c:3074
btrfs_remount_rw fs/btrfs/super.c:1319 [inline]
btrfs_reconfigure+0x828/0x2418 fs/btrfs/super.c:1543
reconfigure_super+0x1d4/0x6f0 fs/super.c:1083
do_remount fs/namespace.c:3365 [inline]
path_mount+0xb34/0xde0 fs/namespace.c:4200
do_mount fs/namespace.c:4221 [inline]
__do_sys_mount fs/namespace.c:4432 [inline]
__se_sys_mount fs/namespace.c:4409 [inline]
__arm64_sys_mount+0x3e8/0x468 fs/namespace.c:4409
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767
el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600
Code: f0047182 91178042 528089c3 9771d47b (d4210000)
---[ end trace 0000000000000000 ]---
This happens because we are processing an empty block group, which has
no extents allocated from it, there are no items for this block group,
including the block group item since block group items are stored in a
dedicated tree when using the block group tree feature. It also means
this is the block group with the highest start offset, so there are no
higher keys in the extent root, hence btrfs_search_slot_for_read()
returns 1 (no higher key found).
Fix this by asserting 'ret' is 0 only if the block group tree feature
is not enabled, in which case we should find a block group item for
the block group since it's stored in the extent root and block group
item keys are greater than extent item keys (the value for
BTRFS_BLOCK_GROUP_ITEM_KEY is 192 and for BTRFS_EXTENT_ITEM_KEY and
BTRFS_METADATA_ITEM_KEY the values are 168 and 169 respectively).
In case 'ret' is 1, we just need to add a record to the free space
tree which spans the whole block group, and we can achieve this by
making 'ret == 0' as the while loop's condition. |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: max9286: fix kernel oops when removing module
When removing the max9286 module we get a kernel oops:
Unable to handle kernel paging request at virtual address 000000aa00000094
Mem abort info:
ESR = 0x96000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000000880d85000
[000000aa00000094] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
Modules linked in: fsl_jr_uio caam_jr rng_core libdes caamkeyblob_desc caamhash_desc caamalg_desc crypto_engine max9271 authenc crct10dif_ce mxc_jpeg_encdec
CPU: 2 PID: 713 Comm: rmmod Tainted: G C 5.15.5-00057-gaebcd29c8ed7-dirty #5
Hardware name: Freescale i.MX8QXP MEK (DT)
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : i2c_mux_del_adapters+0x24/0xf0
lr : max9286_remove+0x28/0xd0 [max9286]
sp : ffff800013a9bbf0
x29: ffff800013a9bbf0 x28: ffff00080b6da940 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
x23: ffff000801a5b970 x22: ffff0008048b0890 x21: ffff800009297000
x20: ffff0008048b0f70 x19: 000000aa00000064 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000014 x13: 0000000000000000 x12: ffff000802da49e8
x11: ffff000802051918 x10: ffff000802da4920 x9 : ffff000800030098
x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d
x5 : 8080808000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffffffffffffffff x1 : ffff00080b6da940 x0 : 0000000000000000
Call trace:
i2c_mux_del_adapters+0x24/0xf0
max9286_remove+0x28/0xd0 [max9286]
i2c_device_remove+0x40/0x110
__device_release_driver+0x188/0x234
driver_detach+0xc4/0x150
bus_remove_driver+0x60/0xe0
driver_unregister+0x34/0x64
i2c_del_driver+0x58/0xa0
max9286_i2c_driver_exit+0x1c/0x490 [max9286]
__arm64_sys_delete_module+0x194/0x260
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xd4/0xfc
do_el0_svc+0x2c/0x94
el0_svc+0x28/0x80
el0t_64_sync_handler+0xa8/0x130
el0t_64_sync+0x1a0/0x1a4
The Oops happens because the I2C client data does not point to
max9286_priv anymore but to v4l2_subdev. The change happened in
max9286_init() which calls v4l2_i2c_subdev_init() later on...
Besides fixing the max9286_remove() function, remove the call to
i2c_set_clientdata() in max9286_probe(), to avoid confusion, and make
the necessary changes to max9286_init() so that it doesn't have to use
i2c_get_clientdata() in order to fetch the pointer to priv. |
| EduSoho versions prior to 22.4.7 contain an arbitrary file read vulnerability in the classroom-course-statistics export functionality. A remote, unauthenticated attacker can supply crafted path traversal sequences in the fileNames[] parameter to read arbitrary files from the server filesystem, including application configuration files such as config/parameters.yml that may contain secrets and database credentials. Exploitation evidence was observed by the Shadowserver Foundation on 2026-01-19 (UTC). |
| An improper certificate validation vulnerability has been reported to affect Helpdesk. If exploited, the vulnerability could allow remote attackers to compromise the security of the system.
We have already fixed the vulnerability in the following version:
Helpdesk 3.3.3 and later |
| A Buffer Copy without Checking Size of Input vulnerability in the PFE management daemon (evo-pfemand) of Juniper Networks Junos OS Evolved on ACX7000 Series allows an unauthenticated, adjacent attacker to cause a
Denial-of-Service (DoS).When multicast traffic with a specific, valid (S,G) is received, evo-pfemand crashes which leads to an outage of the affected FPC until it is manually recovered.
This issue affects Junos OS Evolved on ACX7000 Series:
* All versions before 21.2R3-S8-EVO,
* 21.4-EVO versions before 21.4R3-S7-EVO,
* 22.2-EVO versions before 22.2R3-S4-EVO,
* 22.3-EVO versions before 22.3R3-S3-EVO,
* 22.4-EVO versions before 22.4R3-S2-EVO,
* 23.2-EVO versions before 23.2R2-EVO,
* 23.4-EVO versions before 23.4R1-S2-EVO, 23.4R2-EVO. |
| An Improper Restriction of Communication Channel to Intended Endpoints vulnerability in Juniper Networks Junos OS Evolved on ACX 7000 Series allows an unauthenticated, network-based attacker to cause a limited information disclosure and availability impact to the device.
Due to a wrong initialization, specific processes which should only be able to communicate internally within the device can be reached over the network via open ports.
This issue affects Junos OS Evolved on ACX 7000 Series:
* All versions before 21.4R3-S7-EVO,
* 22.2-EVO
versions
before 22.2R3-S4-EVO,
* 22.3-EVO versions before 22.3R3-S3-EVO,
* 22.4-EVO versions before 22.4R3-S2-EVO,
* 23.2-EVO versions before 23.2R2-EVO,
* 23.4-EVO versions before 23.4R1-S1-EVO, 23.4R2-EVO. |
| An improper control of generation of code vulnerability has been reported to affect Malware Remover. The remote attackers can then exploit the vulnerability to bypass protection mechanism.
We have already fixed the vulnerability in the following version:
Malware Remover 6.6.8.20251023 and later |
| VB-Audio Matrix and Matrix Coconut (versions ending in 1.0.2.2 and 2.0.2.2 and earlier, respectively), contain a local privilege escalation vulnerability in the VBMatrix VAIO virtual audio driver (vbmatrixvaio64*_win10.sys). The driver allocates a 128-byte non-paged pool buffer and, upon receiving IOCTL 0x222060, maps it into user space using an MDL and MmMapLockedPagesSpecifyCache. Because the allocation size is not page-aligned, the mapping exposes the entire 0x1000-byte kernel page containing the buffer plus adjacent non-paged pool allocations with read/write permissions. An unprivileged local attacker can open a device handle (using the required 0x800 attribute flag), invoke the IOCTL to obtain the mapping, and then read or modify live kernel objects and pointers present on that page. This enables bypass of KASLR, arbitrary kernel memory read/write within the exposed page, corruption of kernel objects, and escalation to SYSTEM. |
| VB-Audio Voicemeeter, Voicemeeter Banana, and Voicemeeter Potato (versions ending in 1.1.1.9, 2.1.1.9, and 3.1.1.9 and earlier, respectively), as well as VB-Audio Matrix and Matrix Coconut (versions ending in 1.0.2.2 and 2.0.2.2 and earlier, respectively), contain a vulnerability in their virtual audio drivers (vbvoicemeetervaio64*.sys, vbmatrixvaio64*.sys, vbaudio_vmauxvaio*.sys, vbaudio_vmvaio*.sys, and vbaudio_vmvaio3*.sys). The drivers map non-paged pool memory into user space via MmMapLockedPagesSpecifyCache using UserMode access without proper exception handling. If the mapping fails, such as when a process has exhausted available virtual address space, MmMapLockedPagesSpecifyCache raises an exception that is not caught, causing a kernel crash (BSoD), typically SYSTEM_SERVICE_EXCEPTION with STATUS_NO_MEMORY. This flaw allows a local unprivileged user to trigger a denial-of-service on affected Windows systems. |
| A maliciously crafted HTML payload, stored in a component’s description and clicked by a user, can trigger a Stored Cross-site Scripting (XSS) vulnerability in the Autodesk Fusion desktop application. A malicious actor may leverage this vulnerability to read local files or execute arbitrary code in the context of the current process. |
| A path traversal vulnerability has been reported to affect Qfiling. The remote attackers can then exploit the vulnerability to read the contents of unexpected files or system data.
We have already fixed the vulnerability in the following version:
Qfiling 3.13.1 and later |
| Invalid memory access in Sentencepiece versions less than 0.2.1 when using a vulnerable model file, which is not created in the normal training procedure. |
| A vulnerability was identified in the email parsing library due to improper handling of specially formatted recipient email addresses. An attacker can exploit this flaw by crafting a recipient address that embeds an external address within quotes. This causes the application to misdirect the email to the attacker's external address instead of the intended internal recipient. This could lead to a significant data leak of sensitive information and allow an attacker to bypass security filters and access controls. |
| An SQL injection vulnerability has been reported to affect Hyper Data Protector. The remote attackers can then exploit the vulnerability to execute unauthorized code or commands.
We have already fixed the vulnerability in the following versions:
Hyper Data Protector 2.2.4.1 and later |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| A path traversal vulnerability exists in TMS Management Console (version 6.3.7.27386.20250818) from TMS Global Software. The "Download Template" function in the profile dashboard does not neutralize directory traversal sequences (../) in the filePath parameter, allowing authenticated users to read arbitrary files, such as the server's Web.config. |