| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: do not accept ACK of bytes we never sent
This patch is based on a detailed report and ideas from Yepeng Pan
and Christian Rossow.
ACK seq validation is currently following RFC 5961 5.2 guidelines:
The ACK value is considered acceptable only if
it is in the range of ((SND.UNA - MAX.SND.WND) <= SEG.ACK <=
SND.NXT). All incoming segments whose ACK value doesn't satisfy the
above condition MUST be discarded and an ACK sent back. It needs to
be noted that RFC 793 on page 72 (fifth check) says: "If the ACK is a
duplicate (SEG.ACK < SND.UNA), it can be ignored. If the ACK
acknowledges something not yet sent (SEG.ACK > SND.NXT) then send an
ACK, drop the segment, and return". The "ignored" above implies that
the processing of the incoming data segment continues, which means
the ACK value is treated as acceptable. This mitigation makes the
ACK check more stringent since any ACK < SND.UNA wouldn't be
accepted, instead only ACKs that are in the range ((SND.UNA -
MAX.SND.WND) <= SEG.ACK <= SND.NXT) get through.
This can be refined for new (and possibly spoofed) flows,
by not accepting ACK for bytes that were never sent.
This greatly improves TCP security at a little cost.
I added a Fixes: tag to make sure this patch will reach stable trees,
even if the 'blamed' patch was adhering to the RFC.
tp->bytes_acked was added in linux-4.2
Following packetdrill test (courtesy of Yepeng Pan) shows
the issue at hand:
0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1024) = 0
// ---------------- Handshake ------------------- //
// when window scale is set to 14 the window size can be extended to
// 65535 * (2^14) = 1073725440. Linux would accept an ACK packet
// with ack number in (Server_ISN+1-1073725440. Server_ISN+1)
// ,though this ack number acknowledges some data never
// sent by the server.
+0 < S 0:0(0) win 65535 <mss 1400,nop,wscale 14>
+0 > S. 0:0(0) ack 1 <...>
+0 < . 1:1(0) ack 1 win 65535
+0 accept(3, ..., ...) = 4
// For the established connection, we send an ACK packet,
// the ack packet uses ack number 1 - 1073725300 + 2^32,
// where 2^32 is used to wrap around.
// Note: we used 1073725300 instead of 1073725440 to avoid possible
// edge cases.
// 1 - 1073725300 + 2^32 = 3221241997
// Oops, old kernels happily accept this packet.
+0 < . 1:1001(1000) ack 3221241997 win 65535
// After the kernel fix the following will be replaced by a challenge ACK,
// and prior malicious frame would be dropped.
+0 > . 1:1(0) ack 1001 |
| Nextcloud server is a self hosted personal cloud system. Under some circumstance it was possible to bypass the second factor of 2FA after successfully providing the user credentials. It is recommended that the Nextcloud Server is upgraded to 26.0.13, 27.1.8 or 28.0.4 and Nextcloud Enterprise Server is upgraded to 21.0.9.17, 22.2.10.22, 23.0.12.17, 24.0.12.13, 25.0.13.8, 26.0.13, 27.1.8 or 28.0.4. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix hang during unmount when stopping a space reclaim worker
Often when running generic/562 from fstests we can hang during unmount,
resulting in a trace like this:
Sep 07 11:52:00 debian9 unknown: run fstests generic/562 at 2022-09-07 11:52:00
Sep 07 11:55:32 debian9 kernel: INFO: task umount:49438 blocked for more than 120 seconds.
Sep 07 11:55:32 debian9 kernel: Not tainted 6.0.0-rc2-btrfs-next-122 #1
Sep 07 11:55:32 debian9 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Sep 07 11:55:32 debian9 kernel: task:umount state:D stack: 0 pid:49438 ppid: 25683 flags:0x00004000
Sep 07 11:55:32 debian9 kernel: Call Trace:
Sep 07 11:55:32 debian9 kernel: <TASK>
Sep 07 11:55:32 debian9 kernel: __schedule+0x3c8/0xec0
Sep 07 11:55:32 debian9 kernel: ? rcu_read_lock_sched_held+0x12/0x70
Sep 07 11:55:32 debian9 kernel: schedule+0x5d/0xf0
Sep 07 11:55:32 debian9 kernel: schedule_timeout+0xf1/0x130
Sep 07 11:55:32 debian9 kernel: ? lock_release+0x224/0x4a0
Sep 07 11:55:32 debian9 kernel: ? lock_acquired+0x1a0/0x420
Sep 07 11:55:32 debian9 kernel: ? trace_hardirqs_on+0x2c/0xd0
Sep 07 11:55:32 debian9 kernel: __wait_for_common+0xac/0x200
Sep 07 11:55:32 debian9 kernel: ? usleep_range_state+0xb0/0xb0
Sep 07 11:55:32 debian9 kernel: __flush_work+0x26d/0x530
Sep 07 11:55:32 debian9 kernel: ? flush_workqueue_prep_pwqs+0x140/0x140
Sep 07 11:55:32 debian9 kernel: ? trace_clock_local+0xc/0x30
Sep 07 11:55:32 debian9 kernel: __cancel_work_timer+0x11f/0x1b0
Sep 07 11:55:32 debian9 kernel: ? close_ctree+0x12b/0x5b3 [btrfs]
Sep 07 11:55:32 debian9 kernel: ? __trace_bputs+0x10b/0x170
Sep 07 11:55:32 debian9 kernel: close_ctree+0x152/0x5b3 [btrfs]
Sep 07 11:55:32 debian9 kernel: ? evict_inodes+0x166/0x1c0
Sep 07 11:55:32 debian9 kernel: generic_shutdown_super+0x71/0x120
Sep 07 11:55:32 debian9 kernel: kill_anon_super+0x14/0x30
Sep 07 11:55:32 debian9 kernel: btrfs_kill_super+0x12/0x20 [btrfs]
Sep 07 11:55:32 debian9 kernel: deactivate_locked_super+0x2e/0xa0
Sep 07 11:55:32 debian9 kernel: cleanup_mnt+0x100/0x160
Sep 07 11:55:32 debian9 kernel: task_work_run+0x59/0xa0
Sep 07 11:55:32 debian9 kernel: exit_to_user_mode_prepare+0x1a6/0x1b0
Sep 07 11:55:32 debian9 kernel: syscall_exit_to_user_mode+0x16/0x40
Sep 07 11:55:32 debian9 kernel: do_syscall_64+0x48/0x90
Sep 07 11:55:32 debian9 kernel: entry_SYSCALL_64_after_hwframe+0x63/0xcd
Sep 07 11:55:32 debian9 kernel: RIP: 0033:0x7fcde59a57a7
Sep 07 11:55:32 debian9 kernel: RSP: 002b:00007ffe914217c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
Sep 07 11:55:32 debian9 kernel: RAX: 0000000000000000 RBX: 00007fcde5ae8264 RCX: 00007fcde59a57a7
Sep 07 11:55:32 debian9 kernel: RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000055b57556cdd0
Sep 07 11:55:32 debian9 kernel: RBP: 000055b57556cba0 R08: 0000000000000000 R09: 00007ffe91420570
Sep 07 11:55:32 debian9 kernel: R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
Sep 07 11:55:32 debian9 kernel: R13: 000055b57556cdd0 R14: 000055b57556ccb8 R15: 0000000000000000
Sep 07 11:55:32 debian9 kernel: </TASK>
What happens is the following:
1) The cleaner kthread tries to start a transaction to delete an unused
block group, but the metadata reservation can not be satisfied right
away, so a reservation ticket is created and it starts the async
metadata reclaim task (fs_info->async_reclaim_work);
2) Writeback for all the filler inodes with an i_size of 2K starts
(generic/562 creates a lot of 2K files with the goal of filling
metadata space). We try to create an inline extent for them, but we
fail when trying to insert the inline extent with -ENOSPC (at
cow_file_range_inline()) - since this is not critical, we fallback
to non-inline mode (back to cow_file_range()), reserve extents
---truncated--- |
| An issue in the Palo Alto Networks GlobalProtect app enables a non-privileged user to disable the GlobalProtect app in configurations that allow a user to disable GlobalProtect with a passcode. |
| A privilege escalation (PE) vulnerability in the Palo Alto Networks GlobalProtect app on Windows devices enables a local user to execute programs with elevated privileges. However, execution requires that the local user is able to successfully exploit a race condition. |
| Arbitrary write vulnerability in the Gallery module
Impact: Successful exploitation of this vulnerability may affect service confidentiality. |
| Permission verification vulnerability in the media library module
Impact: Successful exploitation of this vulnerability may affect service confidentiality. |
| Vulnerability of improper memory address protection in the HUKS module
Impact: Successful exploitation of this vulnerability may affect availability. |
| Process residence vulnerability in abnormal scenarios in the print module
Impact: Successful exploitation of this vulnerability may affect availability. |
| Vulnerability of unauthorized access in the app lock module
Impact: Successful exploitation of this vulnerability will affect integrity and confidentiality. |
| Vulnerability of unauthorized access in the app lock module
Impact: Successful exploitation of this vulnerability will affect integrity and confidentiality. |
| File read permission bypass vulnerability in the kernel file system module
Impact: Successful exploitation of this vulnerability may affect service confidentiality. |
| Google gVisor's runsc component exhibited a local privilege escalation vulnerability due to incorrect handling of file access permissions, which allowed unprivileged users to access restricted files. This occurred because the process initially ran with root-like permissions until the first fork. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: llcc: Handle a second device without data corruption
Usually there is only one llcc device. But if there were a second, even
a failed probe call would modify the global drv_data pointer. So check
if drv_data is valid before overwriting it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: keep DMA buffers required for suspend/resume
Nouveau deallocates a few buffers post GPU init which are required for GPU suspend/resume to function correctly.
This is likely not as big an issue on systems where the NVGPU is the only GPU, but on multi-GPU set ups it leads to a regression where the kernel module errors and results in a system-wide rendering freeze.
This commit addresses that regression by moving the two buffers required for suspend and resume to be deallocated at driver unload instead of post init. |
| In https://github.com/google/nftables IP addresses were encoded in the wrong byte order, resulting in an nftables configuration which does not work as intended (might block or not block the desired addresses).
This issue affects: https://pkg.go.dev/github.com/google/nftables@v0.1.0
The bug was fixed in the next released version: https://pkg.go.dev/github.com/google/nftables@v0.2.0 |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: core: Run atomic i2c xfer when !preemptible
Since bae1d3a05a8b, i2c transfers are non-atomic if preemption is
disabled. However, non-atomic i2c transfers require preemption (e.g. in
wait_for_completion() while waiting for the DMA).
panic() calls preempt_disable_notrace() before calling
emergency_restart(). Therefore, if an i2c device is used for the
restart, the xfer should be atomic. This avoids warnings like:
[ 12.667612] WARNING: CPU: 1 PID: 1 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x33c/0x6b0
[ 12.676926] Voluntary context switch within RCU read-side critical section!
...
[ 12.742376] schedule_timeout from wait_for_completion_timeout+0x90/0x114
[ 12.749179] wait_for_completion_timeout from tegra_i2c_wait_completion+0x40/0x70
...
[ 12.994527] atomic_notifier_call_chain from machine_restart+0x34/0x58
[ 13.001050] machine_restart from panic+0x2a8/0x32c
Use !preemptible() instead, which is basically the same check as
pre-v5.2. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: pcrypt - Fix hungtask for PADATA_RESET
We found a hungtask bug in test_aead_vec_cfg as follows:
INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Call trace:
__switch_to+0x98/0xe0
__schedule+0x6c4/0xf40
schedule+0xd8/0x1b4
schedule_timeout+0x474/0x560
wait_for_common+0x368/0x4e0
wait_for_completion+0x20/0x30
wait_for_completion+0x20/0x30
test_aead_vec_cfg+0xab4/0xd50
test_aead+0x144/0x1f0
alg_test_aead+0xd8/0x1e0
alg_test+0x634/0x890
cryptomgr_test+0x40/0x70
kthread+0x1e0/0x220
ret_from_fork+0x10/0x18
Kernel panic - not syncing: hung_task: blocked tasks
For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst->flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won't call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&wait->completion), which will cause
hungtask.
The problem comes as following:
(padata_do_parallel) |
rcu_read_lock_bh(); |
err = -EINVAL; | (padata_replace)
| pinst->flags |= PADATA_RESET;
err = -EBUSY |
if (pinst->flags & PADATA_RESET) |
rcu_read_unlock_bh() |
return err
In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.
v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask. |
| When Bazel Plugin in intellij imports a project (either using "import project" or "Auto import") the dialog for trusting the project is not displayed. This comes from the fact that both call the method ProjectBuilder.createProject which then calls ProjectManager.getInstance().createProject. This method, as its name suggests is intended to create a new project, not to import an existing one.
We recommend upgrading to version 2024.06.04.0.2 or beyond for the IntelliJ, CLion and Android Studio Bazel plugins. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: perf: Do not broadcast to other cpus when starting a counter
This command:
$ perf record -e cycles:k -e instructions:k -c 10000 -m 64M dd if=/dev/zero of=/dev/null count=1000
gives rise to this kernel warning:
[ 444.364395] WARNING: CPU: 0 PID: 104 at kernel/smp.c:775 smp_call_function_many_cond+0x42c/0x436
[ 444.364515] Modules linked in:
[ 444.364657] CPU: 0 PID: 104 Comm: perf-exec Not tainted 6.6.0-rc6-00051-g391df82e8ec3-dirty #73
[ 444.364771] Hardware name: riscv-virtio,qemu (DT)
[ 444.364868] epc : smp_call_function_many_cond+0x42c/0x436
[ 444.364917] ra : on_each_cpu_cond_mask+0x20/0x32
[ 444.364948] epc : ffffffff8009f9e0 ra : ffffffff8009fa5a sp : ff20000000003800
[ 444.364966] gp : ffffffff81500aa0 tp : ff60000002b83000 t0 : ff200000000038c0
[ 444.364982] t1 : ffffffff815021f0 t2 : 000000000000001f s0 : ff200000000038b0
[ 444.364998] s1 : ff60000002c54d98 a0 : ff60000002a73940 a1 : 0000000000000000
[ 444.365013] a2 : 0000000000000000 a3 : 0000000000000003 a4 : 0000000000000100
[ 444.365029] a5 : 0000000000010100 a6 : 0000000000f00000 a7 : 0000000000000000
[ 444.365044] s2 : 0000000000000000 s3 : ffffffffffffffff s4 : ff60000002c54d98
[ 444.365060] s5 : ffffffff81539610 s6 : ffffffff80c20c48 s7 : 0000000000000000
[ 444.365075] s8 : 0000000000000000 s9 : 0000000000000001 s10: 0000000000000001
[ 444.365090] s11: ffffffff80099394 t3 : 0000000000000003 t4 : 00000000eac0c6e6
[ 444.365104] t5 : 0000000400000000 t6 : ff60000002e010d0
[ 444.365120] status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003
[ 444.365226] [<ffffffff8009f9e0>] smp_call_function_many_cond+0x42c/0x436
[ 444.365295] [<ffffffff8009fa5a>] on_each_cpu_cond_mask+0x20/0x32
[ 444.365311] [<ffffffff806e90dc>] pmu_sbi_ctr_start+0x7a/0xaa
[ 444.365327] [<ffffffff806e880c>] riscv_pmu_start+0x48/0x66
[ 444.365339] [<ffffffff8012111a>] perf_adjust_freq_unthr_context+0x196/0x1ac
[ 444.365356] [<ffffffff801237aa>] perf_event_task_tick+0x78/0x8c
[ 444.365368] [<ffffffff8003faf4>] scheduler_tick+0xe6/0x25e
[ 444.365383] [<ffffffff8008a042>] update_process_times+0x80/0x96
[ 444.365398] [<ffffffff800991ec>] tick_sched_handle+0x26/0x52
[ 444.365410] [<ffffffff800993e4>] tick_sched_timer+0x50/0x98
[ 444.365422] [<ffffffff8008a6aa>] __hrtimer_run_queues+0x126/0x18a
[ 444.365433] [<ffffffff8008b350>] hrtimer_interrupt+0xce/0x1da
[ 444.365444] [<ffffffff806cdc60>] riscv_timer_interrupt+0x30/0x3a
[ 444.365457] [<ffffffff8006afa6>] handle_percpu_devid_irq+0x80/0x114
[ 444.365470] [<ffffffff80065b82>] generic_handle_domain_irq+0x1c/0x2a
[ 444.365483] [<ffffffff8045faec>] riscv_intc_irq+0x2e/0x46
[ 444.365497] [<ffffffff808a9c62>] handle_riscv_irq+0x4a/0x74
[ 444.365521] [<ffffffff808aa760>] do_irq+0x7c/0x7e
[ 444.365796] ---[ end trace 0000000000000000 ]---
That's because the fix in commit 3fec323339a4 ("drivers: perf: Fix panic
in riscv SBI mmap support") was wrong since there is no need to broadcast
to other cpus when starting a counter, that's only needed in mmap when
the counters could have already been started on other cpus, so simply
remove this broadcast. |