| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix crash when mount with quota enabled
There is a reported crash when mounting ocfs2 with quota enabled.
RIP: 0010:ocfs2_qinfo_lock_res_init+0x44/0x50 [ocfs2]
Call Trace:
ocfs2_local_read_info+0xb9/0x6f0 [ocfs2]
dquot_load_quota_sb+0x216/0x470
dquot_load_quota_inode+0x85/0x100
ocfs2_enable_quotas+0xa0/0x1c0 [ocfs2]
ocfs2_fill_super.cold+0xc8/0x1bf [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x465/0xac0
__x64_sys_mount+0x103/0x140
It is caused by when initializing dqi_gqlock, the corresponding dqi_type
and dqi_sb are not properly initialized.
This issue is introduced by commit 6c85c2c72819, which wants to avoid
accessing uninitialized variables in error cases. So make global quota
info properly initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix potential AB/BA lock with buffer_mutex and mmap_lock
syzbot caught a potential deadlock between the PCM
runtime->buffer_mutex and the mm->mmap_lock. It was brought by the
recent fix to cover the racy read/write and other ioctls, and in that
commit, I overlooked a (hopefully only) corner case that may take the
revert lock, namely, the OSS mmap. The OSS mmap operation
exceptionally allows to re-configure the parameters inside the OSS
mmap syscall, where mm->mmap_mutex is already held. Meanwhile, the
copy_from/to_user calls at read/write operations also take the
mm->mmap_lock internally, hence it may lead to a AB/BA deadlock.
A similar problem was already seen in the past and we fixed it with a
refcount (in commit b248371628aa). The former fix covered only the
call paths with OSS read/write and OSS ioctls, while we need to cover
the concurrent access via both ALSA and OSS APIs now.
This patch addresses the problem above by replacing the buffer_mutex
lock in the read/write operations with a refcount similar as we've
used for OSS. The new field, runtime->buffer_accessing, keeps the
number of concurrent read/write operations. Unlike the former
buffer_mutex protection, this protects only around the
copy_from/to_user() calls; the other codes are basically protected by
the PCM stream lock. The refcount can be a negative, meaning blocked
by the ioctls. If a negative value is seen, the read/write aborts
with -EBUSY. In the ioctl side, OTOH, they check this refcount, too,
and set to a negative value for blocking unless it's already being
accessed. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: Fix NULL ptr dereference when ENOMEM
Do not call snd_dma_free_pages() when snd_dma_alloc_pages() returns
-ENOMEM because it leads to a NULL pointer dereference bug.
The dmesg says:
[ T1387] sof-audio-pci-intel-tgl 0000:00:1f.3: error: memory alloc failed: -12
[ T1387] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ T1387] #PF: supervisor read access in kernel mode
[ T1387] #PF: error_code(0x0000) - not-present page
[ T1387] PGD 0 P4D 0
[ T1387] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ T1387] CPU: 6 PID: 1387 Comm: alsa-sink-HDA A Tainted: G W 5.17.0-rc4-superb-owl-00055-g80d47f5de5e3
[ T1387] Hardware name: HP HP Laptop 14s-dq2xxx/87FD, BIOS F.15 09/15/2021
[ T1387] RIP: 0010:dma_free_noncontiguous+0x37/0x80
[ T1387] Code: [... snip ...]
[ T1387] RSP: 0000:ffffc90002b87770 EFLAGS: 00010246
[ T1387] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ T1387] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff888101db30d0
[ T1387] RBP: 00000000fffffff4 R08: 0000000000000000 R09: 0000000000000000
[ T1387] R10: 0000000000000000 R11: ffffc90002b874d0 R12: 0000000000000001
[ T1387] R13: 0000000000058000 R14: ffff888105260c68 R15: ffff888105260828
[ T1387] FS: 00007f42e2ffd640(0000) GS:ffff888466b80000(0000) knlGS:0000000000000000
[ T1387] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ T1387] CR2: 0000000000000000 CR3: 000000014acf0003 CR4: 0000000000770ee0
[ T1387] PKRU: 55555554
[ T1387] Call Trace:
[ T1387] <TASK>
[ T1387] cl_stream_prepare+0x10a/0x120 [snd_sof_intel_hda_common 146addf995b9279ae7f509621078cccbe4f875e1]
[... snip ...]
[ T1387] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
brcmfmac: pcie: Release firmwares in the brcmf_pcie_setup error path
This avoids leaking memory if brcmf_chip_get_raminfo fails. Note that
the CLM blob is released in the device remove path. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: Fix wait_for_device_probe() & deferred_probe_timeout interaction
Mounting NFS rootfs was timing out when deferred_probe_timeout was
non-zero [1]. This was because ip_auto_config() initcall times out
waiting for the network interfaces to show up when
deferred_probe_timeout was non-zero. While ip_auto_config() calls
wait_for_device_probe() to make sure any currently running deferred
probe work or asynchronous probe finishes, that wasn't sufficient to
account for devices being deferred until deferred_probe_timeout.
Commit 35a672363ab3 ("driver core: Ensure wait_for_device_probe() waits
until the deferred_probe_timeout fires") tried to fix that by making
sure wait_for_device_probe() waits for deferred_probe_timeout to expire
before returning.
However, if wait_for_device_probe() is called from the kernel_init()
context:
- Before deferred_probe_initcall() [2], it causes the boot process to
hang due to a deadlock.
- After deferred_probe_initcall() [3], it blocks kernel_init() from
continuing till deferred_probe_timeout expires and beats the point of
deferred_probe_timeout that's trying to wait for userspace to load
modules.
Neither of this is good. So revert the changes to
wait_for_device_probe().
[1] - https://lore.kernel.org/lkml/TYAPR01MB45443DF63B9EF29054F7C41FD8C60@TYAPR01MB4544.jpnprd01.prod.outlook.com/
[2] - https://lore.kernel.org/lkml/YowHNo4sBjr9ijZr@dev-arch.thelio-3990X/
[3] - https://lore.kernel.org/lkml/Yo3WvGnNk3LvLb7R@linutronix.de/ |
| In the Linux kernel, the following vulnerability has been resolved:
net: mdio: unexport __init-annotated mdio_bus_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the only in-tree call-site,
drivers/net/phy/phy_device.c is never compiled as modular.
(CONFIG_PHYLIB is boolean) |
| In the Linux kernel, the following vulnerability has been resolved:
net: xfrm: unexport __init-annotated xfrm4_protocol_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the only in-tree call-site,
net/ipv4/xfrm4_policy.c is never compiled as modular.
(CONFIG_XFRM is boolean) |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv6: unexport __init-annotated seg6_hmac_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the caller (net/ipv6/seg6.c)
and the callee (net/ipv6/seg6_hmac.c) belong to the same module.
It seems an internal function call in ipv6.ko. |
| Ashlar-Vellum Cobalt LI File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26051. |
| Ashlar-Vellum Cobalt XE File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of XE files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26236. |
| Ashlar-Vellum Cobalt CO File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26235. |
| Ashlar-Vellum Cobalt CO File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26233. |
| Ashlar-Vellum Cobalt CO File Parsing Memory Corruption Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26053. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| Ashlar-Vellum Cobalt XE File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of XE files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26237. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix tcp_mtup_probe_success vs wrong snd_cwnd
syzbot got a new report [1] finally pointing to a very old bug,
added in initial support for MTU probing.
tcp_mtu_probe() has checks about starting an MTU probe if
tcp_snd_cwnd(tp) >= 11.
But nothing prevents tcp_snd_cwnd(tp) to be reduced later
and before the MTU probe succeeds.
This bug would lead to potential zero-divides.
Debugging added in commit 40570375356c ("tcp: add accessors
to read/set tp->snd_cwnd") has paid off :)
While we are at it, address potential overflows in this code.
[1]
WARNING: CPU: 1 PID: 14132 at include/net/tcp.h:1219 tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712
Modules linked in:
CPU: 1 PID: 14132 Comm: syz-executor.2 Not tainted 5.18.0-syzkaller-07857-gbabf0bb978e3 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:tcp_snd_cwnd_set include/net/tcp.h:1219 [inline]
RIP: 0010:tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712
Code: 74 08 48 89 ef e8 da 80 17 f9 48 8b 45 00 65 48 ff 80 80 03 00 00 48 83 c4 30 5b 41 5c 41 5d 41 5e 41 5f 5d c3 e8 aa b0 c5 f8 <0f> 0b e9 16 fe ff ff 48 8b 4c 24 08 80 e1 07 38 c1 0f 8c c7 fc ff
RSP: 0018:ffffc900079e70f8 EFLAGS: 00010287
RAX: ffffffff88c0f7f6 RBX: ffff8880756e7a80 RCX: 0000000000040000
RDX: ffffc9000c6c4000 RSI: 0000000000031f9e RDI: 0000000000031f9f
RBP: 0000000000000000 R08: ffffffff88c0f606 R09: ffffc900079e7520
R10: ffffed101011226d R11: 1ffff1101011226c R12: 1ffff1100eadcf50
R13: ffff8880756e72c0 R14: 1ffff1100eadcf89 R15: dffffc0000000000
FS: 00007f643236e700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1ab3f1e2a0 CR3: 0000000064fe7000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tcp_clean_rtx_queue+0x223a/0x2da0 net/ipv4/tcp_input.c:3356
tcp_ack+0x1962/0x3c90 net/ipv4/tcp_input.c:3861
tcp_rcv_established+0x7c8/0x1ac0 net/ipv4/tcp_input.c:5973
tcp_v6_do_rcv+0x57b/0x1210 net/ipv6/tcp_ipv6.c:1476
sk_backlog_rcv include/net/sock.h:1061 [inline]
__release_sock+0x1d8/0x4c0 net/core/sock.c:2849
release_sock+0x5d/0x1c0 net/core/sock.c:3404
sk_stream_wait_memory+0x700/0xdc0 net/core/stream.c:145
tcp_sendmsg_locked+0x111d/0x3fc0 net/ipv4/tcp.c:1410
tcp_sendmsg+0x2c/0x40 net/ipv4/tcp.c:1448
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
__sys_sendto+0x439/0x5c0 net/socket.c:2119
__do_sys_sendto net/socket.c:2131 [inline]
__se_sys_sendto net/socket.c:2127 [inline]
__x64_sys_sendto+0xda/0xf0 net/socket.c:2127
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f6431289109
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f643236e168 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f643139c100 RCX: 00007f6431289109
RDX: 00000000d0d0c2ac RSI: 0000000020000080 RDI: 000000000000000a
RBP: 00007f64312e308d R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000246 R12: 0000000000000000
R13: 00007fff372533af R14: 00007f643236e300 R15: 0000000000022000 |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: clcdfb: Fix refcount leak in clcdfb_of_vram_setup
of_parse_phandle() returns a node pointer with refcount incremented, we should
use of_node_put() on it when not need anymore. Add missing of_node_put() to
avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix free of uninitialized nfs4_label on referral lookup.
Send along the already-allocated fattr along with nfs4_fs_locations, and
drop the memcpy of fattr. We end up growing two more allocations, but this
fixes up a crash as:
PID: 790 TASK: ffff88811b43c000 CPU: 0 COMMAND: "ls"
#0 [ffffc90000857920] panic at ffffffff81b9bfde
#1 [ffffc900008579c0] do_trap at ffffffff81023a9b
#2 [ffffc90000857a10] do_error_trap at ffffffff81023b78
#3 [ffffc90000857a58] exc_stack_segment at ffffffff81be1f45
#4 [ffffc90000857a80] asm_exc_stack_segment at ffffffff81c009de
#5 [ffffc90000857b08] nfs_lookup at ffffffffa0302322 [nfs]
#6 [ffffc90000857b70] __lookup_slow at ffffffff813a4a5f
#7 [ffffc90000857c60] walk_component at ffffffff813a86c4
#8 [ffffc90000857cb8] path_lookupat at ffffffff813a9553
#9 [ffffc90000857cf0] filename_lookup at ffffffff813ab86b |
| In the Linux kernel, the following vulnerability has been resolved:
iwlwifi: mei: fix potential NULL-ptr deref
If SKB allocation fails, continue rather than using the NULL
pointer.
Coverity CID: 1497650 |
| In the Linux kernel, the following vulnerability has been resolved:
ipmi:ipmb: Fix refcount leak in ipmi_ipmb_probe
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done.
Add missing of_node_put() to avoid refcount leak. |