| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: make free_choose_arg_map() resilient to partial allocation
free_choose_arg_map() may dereference a NULL pointer if its caller fails
after a partial allocation.
For example, in decode_choose_args(), if allocation of arg_map->args
fails, execution jumps to the fail label and free_choose_arg_map() is
called. Since arg_map->size is updated to a non-zero value before memory
allocation, free_choose_arg_map() will iterate over arg_map->args and
dereference a NULL pointer.
To prevent this potential NULL pointer dereference and make
free_choose_arg_map() more resilient, add checks for pointers before
iterating. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: replace overzealous BUG_ON in osdmap_apply_incremental()
If the osdmap is (maliciously) corrupted such that the incremental
osdmap epoch is different from what is expected, there is no need to
BUG. Instead, just declare the incremental osdmap to be invalid. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: check that server is running in unlock_filesystem
If we are trying to unlock the filesystem via an administrative
interface and nfsd isn't running, it crashes the server. This
happens currently because nfsd4_revoke_states() access state
structures (eg., conf_id_hashtbl) that has been freed as a part
of the server shutdown.
[ 59.465072] Call trace:
[ 59.465308] nfsd4_revoke_states+0x1b4/0x898 [nfsd] (P)
[ 59.465830] write_unlock_fs+0x258/0x440 [nfsd]
[ 59.466278] nfsctl_transaction_write+0xb0/0x120 [nfsd]
[ 59.466780] vfs_write+0x1f0/0x938
[ 59.467088] ksys_write+0xfc/0x1f8
[ 59.467395] __arm64_sys_write+0x74/0xb8
[ 59.467746] invoke_syscall.constprop.0+0xdc/0x1e8
[ 59.468177] do_el0_svc+0x154/0x1d8
[ 59.468489] el0_svc+0x40/0xe0
[ 59.468767] el0t_64_sync_handler+0xa0/0xe8
[ 59.469138] el0t_64_sync+0x1ac/0x1b0
Ensure this can't happen by taking the nfsd_mutex and checking that
the server is still up, and then holding the mutex across the call to
nfsd4_revoke_states(). |
| In the Linux kernel, the following vulnerability has been resolved:
arp: do not assume dev_hard_header() does not change skb->head
arp_create() is the only dev_hard_header() caller
making assumption about skb->head being unchanged.
A recent commit broke this assumption.
Initialize @arp pointer after dev_hard_header() call. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_api: avoid dereferencing ERR_PTR in tcf_idrinfo_destroy
syzbot reported a crash in tc_act_in_hw() during netns teardown where
tcf_idrinfo_destroy() passed an ERR_PTR(-EBUSY) value as a tc_action
pointer, leading to an invalid dereference.
Guard against ERR_PTR entries when iterating the action IDR so teardown
does not call tc_act_in_hw() on an error pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: fix race condition for gdev->srcu
If two drivers were calling gpiochip_add_data_with_key(), one may be
traversing the srcu-protected list in gpio_name_to_desc(), meanwhile
other has just added its gdev in gpiodev_add_to_list_unlocked().
This creates a non-mutexed and non-protected timeframe, when one
instance is dereferencing and using &gdev->srcu, before the other
has initialized it, resulting in crash:
[ 4.935481] Unable to handle kernel paging request at virtual address ffff800272bcc000
[ 4.943396] Mem abort info:
[ 4.943400] ESR = 0x0000000096000005
[ 4.943403] EC = 0x25: DABT (current EL), IL = 32 bits
[ 4.943407] SET = 0, FnV = 0
[ 4.943410] EA = 0, S1PTW = 0
[ 4.943413] FSC = 0x05: level 1 translation fault
[ 4.943416] Data abort info:
[ 4.943418] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 4.946220] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 4.955261] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 4.955268] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000038e6c000
[ 4.961449] [ffff800272bcc000] pgd=0000000000000000
[ 4.969203] , p4d=1000000039739003
[ 4.979730] , pud=0000000000000000
[ 4.980210] phandle (CPU): 0x0000005e, phandle (BE): 0x5e000000 for node "reset"
[ 4.991736] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
...
[ 5.121359] pc : __srcu_read_lock+0x44/0x98
[ 5.131091] lr : gpio_name_to_desc+0x60/0x1a0
[ 5.153671] sp : ffff8000833bb430
[ 5.298440]
[ 5.298443] Call trace:
[ 5.298445] __srcu_read_lock+0x44/0x98
[ 5.309484] gpio_name_to_desc+0x60/0x1a0
[ 5.320692] gpiochip_add_data_with_key+0x488/0xf00
5.946419] ---[ end trace 0000000000000000 ]---
Move initialization code for gdev fields before it is added to
gpio_devices, with adjacent initialization code.
Adjust goto statements to reflect modified order of operations
[Bartosz: fixed a build issue, removed stray newline] |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: Fix RSS LUT NULL pointer crash on early ethtool operations
The RSS LUT is not initialized until the interface comes up, causing
the following NULL pointer crash when ethtool operations like rxhash on/off
are performed before the interface is brought up for the first time.
Move RSS LUT initialization from ndo_open to vport creation to ensure LUT
is always available. This enables RSS configuration via ethtool before
bringing the interface up. Simplify LUT management by maintaining all
changes in the driver's soft copy and programming zeros to the indirection
table when rxhash is disabled. Defer HW programming until the interface
comes up if it is down during rxhash and LUT configuration changes.
Steps to reproduce:
** Load idpf driver; interfaces will be created
modprobe idpf
** Before bringing the interfaces up, turn rxhash off
ethtool -K eth2 rxhash off
[89408.371875] BUG: kernel NULL pointer dereference, address: 0000000000000000
[89408.371908] #PF: supervisor read access in kernel mode
[89408.371924] #PF: error_code(0x0000) - not-present page
[89408.371940] PGD 0 P4D 0
[89408.371953] Oops: Oops: 0000 [#1] SMP NOPTI
<snip>
[89408.372052] RIP: 0010:memcpy_orig+0x16/0x130
[89408.372310] Call Trace:
[89408.372317] <TASK>
[89408.372326] ? idpf_set_features+0xfc/0x180 [idpf]
[89408.372363] __netdev_update_features+0x295/0xde0
[89408.372384] ethnl_set_features+0x15e/0x460
[89408.372406] genl_family_rcv_msg_doit+0x11f/0x180
[89408.372429] genl_rcv_msg+0x1ad/0x2b0
[89408.372446] ? __pfx_ethnl_set_features+0x10/0x10
[89408.372465] ? __pfx_genl_rcv_msg+0x10/0x10
[89408.372482] netlink_rcv_skb+0x58/0x100
[89408.372502] genl_rcv+0x2c/0x50
[89408.372516] netlink_unicast+0x289/0x3e0
[89408.372533] netlink_sendmsg+0x215/0x440
[89408.372551] __sys_sendto+0x234/0x240
[89408.372571] __x64_sys_sendto+0x28/0x30
[89408.372585] x64_sys_call+0x1909/0x1da0
[89408.372604] do_syscall_64+0x7a/0xfa0
[89408.373140] ? clear_bhb_loop+0x60/0xb0
[89408.373647] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[89408.378887] </TASK>
<snip> |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: prevent potential out-of-bounds reads in handle_auth_done()
Perform an explicit bounds check on payload_len to avoid a possible
out-of-bounds access in the callout.
[ idryomov: changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
net: do not write to msg_get_inq in callee
NULL pointer dereference fix.
msg_get_inq is an input field from caller to callee. Don't set it in
the callee, as the caller may not clear it on struct reuse.
This is a kernel-internal variant of msghdr only, and the only user
does reinitialize the field. So this is not critical for that reason.
But it is more robust to avoid the write, and slightly simpler code.
And it fixes a bug, see below.
Callers set msg_get_inq to request the input queue length to be
returned in msg_inq. This is equivalent to but independent from the
SO_INQ request to return that same info as a cmsg (tp->recvmsg_inq).
To reduce branching in the hot path the second also sets the msg_inq.
That is WAI.
This is a fix to commit 4d1442979e4a ("af_unix: don't post cmsg for
SO_INQ unless explicitly asked for"), which fixed the inverse.
Also avoid NULL pointer dereference in unix_stream_read_generic if
state->msg is NULL and msg->msg_get_inq is written. A NULL state->msg
can happen when splicing as of commit 2b514574f7e8 ("net: af_unix:
implement splice for stream af_unix sockets").
Also collapse two branches using a bitwise or. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mscc: ocelot: Fix crash when adding interface under a lag
Commit 15faa1f67ab4 ("lan966x: Fix crash when adding interface under a lag")
fixed a similar issue in the lan966x driver caused by a NULL pointer dereference.
The ocelot_set_aggr_pgids() function in the ocelot driver has similar logic
and is susceptible to the same crash.
This issue specifically affects the ocelot_vsc7514.c frontend, which leaves
unused ports as NULL pointers. The felix_vsc9959.c frontend is unaffected as
it uses the DSA framework which registers all ports.
Fix this by checking if the port pointer is valid before accessing it. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: detach and close netdevs while handling a reset
Protect the reset path from callbacks by setting the netdevs to detached
state and close any netdevs in UP state until the reset handling has
completed. During a reset, the driver will de-allocate resources for the
vport, and there is no guarantee that those will recover, which is why the
existing vport_ctrl_lock does not provide sufficient protection.
idpf_detach_and_close() is called right before reset handling. If the
reset handling succeeds, the netdevs state is recovered via call to
idpf_attach_and_open(). If the reset handling fails the netdevs remain
down. The detach/down calls are protected with RTNL lock to avoid racing
with callbacks. On the recovery side the attach can be done without
holding the RTNL lock as there are no callbacks expected at that point,
due to detach/close always being done first in that flow.
The previous logic restoring the netdevs state based on the
IDPF_VPORT_UP_REQUESTED flag in the init task is not needed anymore, hence
the removal of idpf_set_vport_state(). The IDPF_VPORT_UP_REQUESTED is
still being used to restore the state of the netdevs following the reset,
but has no use outside of the reset handling flow.
idpf_init_hard_reset() is converted to void, since it was used as such and
there is no error handling being done based on its return value.
Before this change, invoking hard and soft resets simultaneously will
cause the driver to lose the vport state:
ip -br a
<inf> UP
echo 1 > /sys/class/net/ens801f0/device/reset& \
ethtool -L ens801f0 combined 8
ip -br a
<inf> DOWN
ip link set <inf> up
ip -br a
<inf> DOWN
Also in case of a failure in the reset path, the netdev is left
exposed to external callbacks, while vport resources are not
initialized, leading to a crash on subsequent ifup/down:
[408471.398966] idpf 0000:83:00.0: HW reset detected
[408471.411744] idpf 0000:83:00.0: Device HW Reset initiated
[408472.277901] idpf 0000:83:00.0: The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x2
[408508.125551] BUG: kernel NULL pointer dereference, address: 0000000000000078
[408508.126112] #PF: supervisor read access in kernel mode
[408508.126687] #PF: error_code(0x0000) - not-present page
[408508.127256] PGD 2aae2f067 P4D 0
[408508.127824] Oops: Oops: 0000 [#1] SMP NOPTI
...
[408508.130871] RIP: 0010:idpf_stop+0x39/0x70 [idpf]
...
[408508.139193] Call Trace:
[408508.139637] <TASK>
[408508.140077] __dev_close_many+0xbb/0x260
[408508.140533] __dev_change_flags+0x1cf/0x280
[408508.140987] netif_change_flags+0x26/0x70
[408508.141434] dev_change_flags+0x3d/0xb0
[408508.141878] devinet_ioctl+0x460/0x890
[408508.142321] inet_ioctl+0x18e/0x1d0
[408508.142762] ? _copy_to_user+0x22/0x70
[408508.143207] sock_do_ioctl+0x3d/0xe0
[408508.143652] sock_ioctl+0x10e/0x330
[408508.144091] ? find_held_lock+0x2b/0x80
[408508.144537] __x64_sys_ioctl+0x96/0xe0
[408508.144979] do_syscall_64+0x79/0x3d0
[408508.145415] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[408508.145860] RIP: 0033:0x7f3e0bb4caff |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: provide locking for v4_end_grace
Writing to v4_end_grace can race with server shutdown and result in
memory being accessed after it was freed - reclaim_str_hashtbl in
particularly.
We cannot hold nfsd_mutex across the nfsd4_end_grace() call as that is
held while client_tracking_op->init() is called and that can wait for
an upcall to nfsdcltrack which can write to v4_end_grace, resulting in a
deadlock.
nfsd4_end_grace() is also called by the landromat work queue and this
doesn't require locking as server shutdown will stop the work and wait
for it before freeing anything that nfsd4_end_grace() might access.
However, we must be sure that writing to v4_end_grace doesn't restart
the work item after shutdown has already waited for it. For this we
add a new flag protected with nn->client_lock. It is set only while it
is safe to make client tracking calls, and v4_end_grace only schedules
work while the flag is set with the spinlock held.
So this patch adds a nfsd_net field "client_tracking_active" which is
set as described. Another field "grace_end_forced", is set when
v4_end_grace is written. After this is set, and providing
client_tracking_active is set, the laundromat is scheduled.
This "grace_end_forced" field bypasses other checks for whether the
grace period has finished.
This resolves a race which can result in use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix memory leak in skb_segment_list for GRO packets
When skb_segment_list() is called during packet forwarding, it handles
packets that were aggregated by the GRO engine.
Historically, the segmentation logic in skb_segment_list assumes that
individual segments are split from a parent SKB and may need to carry
their own socket memory accounting. Accordingly, the code transfers
truesize from the parent to the newly created segments.
Prior to commit ed4cccef64c1 ("gro: fix ownership transfer"), this
truesize subtraction in skb_segment_list() was valid because fragments
still carry a reference to the original socket.
However, commit ed4cccef64c1 ("gro: fix ownership transfer") changed
this behavior by ensuring that fraglist entries are explicitly
orphaned (skb->sk = NULL) to prevent illegal orphaning later in the
stack. This change meant that the entire socket memory charge remained
with the head SKB, but the corresponding accounting logic in
skb_segment_list() was never updated.
As a result, the current code unconditionally adds each fragment's
truesize to delta_truesize and subtracts it from the parent SKB. Since
the fragments are no longer charged to the socket, this subtraction
results in an effective under-count of memory when the head is freed.
This causes sk_wmem_alloc to remain non-zero, preventing socket
destruction and leading to a persistent memory leak.
The leak can be observed via KMEMLEAK when tearing down the networking
environment:
unreferenced object 0xffff8881e6eb9100 (size 2048):
comm "ping", pid 6720, jiffies 4295492526
backtrace:
kmem_cache_alloc_noprof+0x5c6/0x800
sk_prot_alloc+0x5b/0x220
sk_alloc+0x35/0xa00
inet6_create.part.0+0x303/0x10d0
__sock_create+0x248/0x640
__sys_socket+0x11b/0x1d0
Since skb_segment_list() is exclusively used for SKB_GSO_FRAGLIST
packets constructed by GRO, the truesize adjustment is removed.
The call to skb_release_head_state() must be preserved. As documented in
commit cf673ed0e057 ("net: fix fraglist segmentation reference count
leak"), it is still required to correctly drop references to SKB
extensions that may be overwritten during __copy_skb_header(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: avoid kernel-infoleak from struct iw_point
struct iw_point has a 32bit hole on 64bit arches.
struct iw_point {
void __user *pointer; /* Pointer to the data (in user space) */
__u16 length; /* number of fields or size in bytes */
__u16 flags; /* Optional params */
};
Make sure to zero the structure to avoid disclosing 32bits of kernel data
to user space. |
| In the Linux kernel, the following vulnerability has been resolved:
dm-verity: disable recursive forward error correction
There are two problems with the recursive correction:
1. It may cause denial-of-service. In fec_read_bufs, there is a loop that
has 253 iterations. For each iteration, we may call verity_hash_for_block
recursively. There is a limit of 4 nested recursions - that means that
there may be at most 253^4 (4 billion) iterations. Red Hat QE team
actually created an image that pushes dm-verity to this limit - and this
image just makes the udev-worker process get stuck in the 'D' state.
2. It doesn't work. In fec_read_bufs we store data into the variable
"fio->bufs", but fio bufs is shared between recursive invocations, if
"verity_hash_for_block" invoked correction recursively, it would
overwrite partially filled fio->bufs. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: avoid chain re-validation if possible
Hamza Mahfooz reports cpu soft lock-ups in
nft_chain_validate():
watchdog: BUG: soft lockup - CPU#1 stuck for 27s! [iptables-nft-re:37547]
[..]
RIP: 0010:nft_chain_validate+0xcb/0x110 [nf_tables]
[..]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_table_validate+0x6b/0xb0 [nf_tables]
nf_tables_validate+0x8b/0xa0 [nf_tables]
nf_tables_commit+0x1df/0x1eb0 [nf_tables]
[..]
Currently nf_tables will traverse the entire table (chain graph), starting
from the entry points (base chains), exploring all possible paths
(chain jumps). But there are cases where we could avoid revalidation.
Consider:
1 input -> j2 -> j3
2 input -> j2 -> j3
3 input -> j1 -> j2 -> j3
Then the second rule does not need to revalidate j2, and, by extension j3,
because this was already checked during validation of the first rule.
We need to validate it only for rule 3.
This is needed because chain loop detection also ensures we do not exceed
the jump stack: Just because we know that j2 is cycle free, its last jump
might now exceed the allowed stack size. We also need to update all
reachable chains with the new largest observed call depth.
Care has to be taken to revalidate even if the chain depth won't be an
issue: chain validation also ensures that expressions are not called from
invalid base chains. For example, the masquerade expression can only be
called from NAT postrouting base chains.
Therefore we also need to keep record of the base chain context (type,
hooknum) and revalidate if the chain becomes reachable from a different
hook location. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free warning in btrfs_get_or_create_delayed_node()
Previously, btrfs_get_or_create_delayed_node() set the delayed_node's
refcount before acquiring the root->delayed_nodes lock.
Commit e8513c012de7 ("btrfs: implement ref_tracker for delayed_nodes")
moved refcount_set inside the critical section, which means there is
no longer a memory barrier between setting the refcount and setting
btrfs_inode->delayed_node.
Without that barrier, the stores to node->refs and
btrfs_inode->delayed_node may become visible out of order. Another
thread can then read btrfs_inode->delayed_node and attempt to
increment a refcount that hasn't been set yet, leading to a
refcounting bug and a use-after-free warning.
The fix is to move refcount_set back to where it was to take
advantage of the implicit memory barrier provided by lock
acquisition.
Because the allocations now happen outside of the lock's critical
section, they can use GFP_NOFS instead of GFP_ATOMIC. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: mpsse: ensure worker is torn down
When an IRQ worker is running, unplugging the device would cause a
crash. The sealevel hardware this driver was written for was not
hotpluggable, so I never realized it.
This change uses a spinlock to protect a list of workers, which
it tears down on disconnect. |
| Improper Control of Generation of Code ('Code Injection') vulnerability in LUBUS WP Query Console allows Code Injection.This issue affects WP Query Console: from n/a through 1.0. |
| IAQS and I6 developed by JNC has a Missing Authentication vulnerability, allowing unauthenticated remote attackers to directly operate system administrative functionalities. |