| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The EPHEMERAL coder in ImageMagick before 6.9.3-10 and 7.x before 7.0.1-1 allows remote attackers to delete arbitrary files via a crafted image. |
| Unspecified vulnerability in Oracle Java SE 6u113, 7u99, and 8u77; Java SE Embedded 8u77; and JRockit R28.3.9 allows remote attackers to affect confidentiality, integrity, and availability via vectors related to JMX. |
| Unspecified vulnerability in Oracle Java SE 6u101, 7u85, and 8u60 allows remote attackers to affect integrity via unknown vectors related to Deployment. |
| The PDF reader in Mozilla Firefox before 39.0.3, Firefox ESR 38.x before 38.1.1, and Firefox OS before 2.2 allows remote attackers to bypass the Same Origin Policy, and read arbitrary files or gain privileges, via vectors involving crafted JavaScript code and a native setter, as exploited in the wild in August 2015. |
| Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2015-4732. |
| The Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to send arbitrary numbers that are actually not public keys, and trigger expensive server-side DHE modular-exponentiation calculations, aka a D(HE)at or D(HE)ater attack. The client needs very little CPU resources and network bandwidth. The attack may be more disruptive in cases where a client can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Station-To-Station-Link (STSL) Transient Key (STK) during the PeerKey handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the group key handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the group key handshake, allowing an attacker within radio range to spoof frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11r allows reinstallation of the Pairwise Transient Key (PTK) Temporal Key (TK) during the fast BSS transmission (FT) handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Tunneled Direct-Link Setup (TDLS) Peer Key (TPK) during the TDLS handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Pairwise Transient Key (PTK) Temporal Key (TK) during the four-way handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| glibc contains a vulnerability that allows specially crafted LD_LIBRARY_PATH values to manipulate the heap/stack, causing them to alias, potentially resulting in arbitrary code execution. Please note that additional hardening changes have been made to glibc to prevent manipulation of stack and heap memory but these issues are not directly exploitable, as such they have not been given a CVE. This affects glibc 2.25 and earlier. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the four-way handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| The jpc_floorlog2 function in jpc_math.c in JasPer before 1.900.17 allows remote attackers to cause a denial of service (assertion failure) via unspecified vectors. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the four-way handshake, allowing an attacker within radio range to spoof frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that support 802.11v allows reinstallation of the Group Temporal Key (GTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame, allowing an attacker within radio range to replay frames from access points to clients. |
| The ntpq saveconfig command in NTP 4.1.2, 4.2.x before 4.2.8p6, 4.3, 4.3.25, 4.3.70, and 4.3.77 does not properly filter special characters, which allows attackers to cause unspecified impact via a crafted filename. |
| The panic_gate check in NTP before 4.2.8p5 is only re-enabled after the first change to the system clock that was greater than 128 milliseconds by default, which allows remote attackers to set NTP to an arbitrary time when started with the -g option, or to alter the time by up to 900 seconds otherwise by responding to an unspecified number of requests from trusted sources, and leveraging a resulting denial of service (abort and restart). |
| Memory leak in net/vmxnet3.c in QEMU allows remote attackers to cause a denial of service (memory consumption). |