| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
VMCI: Fix memcpy() run-time warning in dg_dispatch_as_host()
Syzkaller hit 'WARNING in dg_dispatch_as_host' bug.
memcpy: detected field-spanning write (size 56) of single field "&dg_info->msg"
at drivers/misc/vmw_vmci/vmci_datagram.c:237 (size 24)
WARNING: CPU: 0 PID: 1555 at drivers/misc/vmw_vmci/vmci_datagram.c:237
dg_dispatch_as_host+0x88e/0xa60 drivers/misc/vmw_vmci/vmci_datagram.c:237
Some code commentry, based on my understanding:
544 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
/// This is 24 + payload_size
memcpy(&dg_info->msg, dg, dg_size);
Destination = dg_info->msg ---> this is a 24 byte
structure(struct vmci_datagram)
Source = dg --> this is a 24 byte structure (struct vmci_datagram)
Size = dg_size = 24 + payload_size
{payload_size = 56-24 =32} -- Syzkaller managed to set payload_size to 32.
35 struct delayed_datagram_info {
36 struct datagram_entry *entry;
37 struct work_struct work;
38 bool in_dg_host_queue;
39 /* msg and msg_payload must be together. */
40 struct vmci_datagram msg;
41 u8 msg_payload[];
42 };
So those extra bytes of payload are copied into msg_payload[], a run time
warning is seen while fuzzing with Syzkaller.
One possible way to fix the warning is to split the memcpy() into
two parts -- one -- direct assignment of msg and second taking care of payload.
Gustavo quoted:
"Under FORTIFY_SOURCE we should not copy data across multiple members
in a structure." |
| In the Linux kernel, the following vulnerability has been resolved:
dma-direct: Leak pages on dma_set_decrypted() failure
On TDX it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
DMA could free decrypted/shared pages if dma_set_decrypted() fails. This
should be a rare case. Just leak the pages in this case instead of
freeing them. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks()
The unhandled case in btrfs_relocate_sys_chunks() loop is a corruption,
as it could be caused only by two impossible conditions:
- at first the search key is set up to look for a chunk tree item, with
offset -1, this is an inexact search and the key->offset will contain
the correct offset upon a successful search, a valid chunk tree item
cannot have an offset -1
- after first successful search, the found_key corresponds to a chunk
item, the offset is decremented by 1 before the next loop, it's
impossible to find a chunk item there due to alignment and size
constraints |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: reduce rtnl pressure in smc_pnet_create_pnetids_list()
Many syzbot reports show extreme rtnl pressure, and many of them hint
that smc acquires rtnl in netns creation for no good reason [1]
This patch returns early from smc_pnet_net_init()
if there is no netdevice yet.
I am not even sure why smc_pnet_create_pnetids_list() even exists,
because smc_pnet_netdev_event() is also calling
smc_pnet_add_base_pnetid() when handling NETDEV_UP event.
[1] extract of typical syzbot reports
2 locks held by syz-executor.3/12252:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.4/12253:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.1/12257:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.2/12261:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.0/12265:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.3/12268:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.4/12271:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.1/12274:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.2/12280:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/coco: Require seeding RNG with RDRAND on CoCo systems
There are few uses of CoCo that don't rely on working cryptography and
hence a working RNG. Unfortunately, the CoCo threat model means that the
VM host cannot be trusted and may actively work against guests to
extract secrets or manipulate computation. Since a malicious host can
modify or observe nearly all inputs to guests, the only remaining source
of entropy for CoCo guests is RDRAND.
If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole
is meant to gracefully continue on gathering entropy from other sources,
but since there aren't other sources on CoCo, this is catastrophic.
This is mostly a concern at boot time when initially seeding the RNG, as
after that the consequences of a broken RDRAND are much more
theoretical.
So, try at boot to seed the RNG using 256 bits of RDRAND output. If this
fails, panic(). This will also trigger if the system is booted without
RDRAND, as RDRAND is essential for a safe CoCo boot.
Add this deliberately to be "just a CoCo x86 driver feature" and not
part of the RNG itself. Many device drivers and platforms have some
desire to contribute something to the RNG, and add_device_randomness()
is specifically meant for this purpose.
Any driver can call it with seed data of any quality, or even garbage
quality, and it can only possibly make the quality of the RNG better or
have no effect, but can never make it worse.
Rather than trying to build something into the core of the RNG, consider
the particular CoCo issue just a CoCo issue, and therefore separate it
all out into driver (well, arch/platform) code.
[ bp: Massage commit message. ] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: udc: remove warning when queue disabled ep
It is possible trigger below warning message from mass storage function,
WARNING: CPU: 6 PID: 3839 at drivers/usb/gadget/udc/core.c:294 usb_ep_queue+0x7c/0x104
pc : usb_ep_queue+0x7c/0x104
lr : fsg_main_thread+0x494/0x1b3c
Root cause is mass storage function try to queue request from main thread,
but other thread may already disable ep when function disable.
As there is no function failure in the driver, in order to avoid effort
to fix warning, change WARN_ON_ONCE() in usb_ep_queue() to pr_debug(). |
| In the Linux kernel, the following vulnerability has been resolved:
x86/efistub: Call mixed mode boot services on the firmware's stack
Normally, the EFI stub calls into the EFI boot services using the stack
that was live when the stub was entered. According to the UEFI spec,
this stack needs to be at least 128k in size - this might seem large but
all asynchronous processing and event handling in EFI runs from the same
stack and so quite a lot of space may be used in practice.
In mixed mode, the situation is a bit different: the bootloader calls
the 32-bit EFI stub entry point, which calls the decompressor's 32-bit
entry point, where the boot stack is set up, using a fixed allocation
of 16k. This stack is still in use when the EFI stub is started in
64-bit mode, and so all calls back into the EFI firmware will be using
the decompressor's limited boot stack.
Due to the placement of the boot stack right after the boot heap, any
stack overruns have gone unnoticed. However, commit
5c4feadb0011983b ("x86/decompressor: Move global symbol references to C code")
moved the definition of the boot heap into C code, and now the boot
stack is placed right at the base of BSS, where any overruns will
corrupt the end of the .data section.
While it would be possible to work around this by increasing the size of
the boot stack, doing so would affect all x86 systems, and mixed mode
systems are a tiny (and shrinking) fraction of the x86 installed base.
So instead, record the firmware stack pointer value when entering from
the 32-bit firmware, and switch to this stack every time a EFI boot
service call is made. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: ensure offloading TID queue exists
The resume code path assumes that the TX queue for the offloading TID
has been configured. At resume time it then tries to sync the write
pointer as it may have been updated by the firmware.
In the unusual event that no packets have been send on TID 0, the queue
will not have been allocated and this causes a crash. Fix this by
ensuring the queue exist at suspend time. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix fortify source warning while accessing Eth segment
------------[ cut here ]------------
memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2)
WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy
[last unloaded: mlx_compat(OE)]
CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7
RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8
R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80
FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0x72/0x90
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? __warn+0x8d/0x160
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? report_bug+0x1bb/0x1d0
? handle_bug+0x46/0x90
? exc_invalid_op+0x19/0x80
? asm_exc_invalid_op+0x1b/0x20
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
mlx5_ib_post_send_nodrain+0xb/0x20 [mlx5_ib]
ipoib_send+0x2ec/0x770 [ib_ipoib]
ipoib_start_xmit+0x5a0/0x770 [ib_ipoib]
dev_hard_start_xmit+0x8e/0x1e0
? validate_xmit_skb_list+0x4d/0x80
sch_direct_xmit+0x116/0x3a0
__dev_xmit_skb+0x1fd/0x580
__dev_queue_xmit+0x284/0x6b0
? _raw_spin_unlock_irq+0xe/0x50
? __flush_work.isra.0+0x20d/0x370
? push_pseudo_header+0x17/0x40 [ib_ipoib]
neigh_connected_output+0xcd/0x110
ip_finish_output2+0x179/0x480
? __smp_call_single_queue+0x61/0xa0
__ip_finish_output+0xc3/0x190
ip_finish_output+0x2e/0xf0
ip_output+0x78/0x110
? __pfx_ip_finish_output+0x10/0x10
ip_local_out+0x64/0x70
__ip_queue_xmit+0x18a/0x460
ip_queue_xmit+0x15/0x30
__tcp_transmit_skb+0x914/0x9c0
tcp_write_xmit+0x334/0x8d0
tcp_push_one+0x3c/0x60
tcp_sendmsg_locked+0x2e1/0xac0
tcp_sendmsg+0x2d/0x50
inet_sendmsg+0x43/0x90
sock_sendmsg+0x68/0x80
sock_write_iter+0x93/0x100
vfs_write+0x326/0x3c0
ksys_write+0xbd/0xf0
? do_syscall_64+0x69/0x90
__x64_sys_write+0x19/0x30
do_syscall_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault()
When trying to use copy_from_kernel_nofault() to read vsyscall page
through a bpf program, the following oops was reported:
BUG: unable to handle page fault for address: ffffffffff600000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
RIP: 0010:copy_from_kernel_nofault+0x6f/0x110
......
Call Trace:
<TASK>
? copy_from_kernel_nofault+0x6f/0x110
bpf_probe_read_kernel+0x1d/0x50
bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d
trace_call_bpf+0xc5/0x1c0
perf_call_bpf_enter.isra.0+0x69/0xb0
perf_syscall_enter+0x13e/0x200
syscall_trace_enter+0x188/0x1c0
do_syscall_64+0xb5/0xe0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
</TASK>
......
---[ end trace 0000000000000000 ]---
The oops is triggered when:
1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall
page and invokes copy_from_kernel_nofault() which in turn calls
__get_user_asm().
2) Because the vsyscall page address is not readable from kernel space,
a page fault exception is triggered accordingly.
3) handle_page_fault() considers the vsyscall page address as a user
space address instead of a kernel space address. This results in the
fix-up setup by bpf not being applied and a page_fault_oops() is invoked
due to SMAP.
Considering handle_page_fault() has already considered the vsyscall page
address as a userspace address, fix the problem by disallowing vsyscall
page read for copy_from_kernel_nofault(). |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix WARNING in _copy_from_iter
Syzkaller reports a warning in _copy_from_iter because an
iov_iter is supposedly used in the wrong direction. The reason
is that syzcaller managed to generate a request with
a transfer direction of SG_DXFER_TO_FROM_DEV. This instructs
the kernel to copy user buffers into the kernel, read into
the copied buffers and then copy the data back to user space.
Thus the iovec is used in both directions.
Detect this situation in the block layer and construct a new
iterator with the correct direction for the copy-in. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid allocating blocks from corrupted group in ext4_mb_try_best_found()
Determine if the group block bitmap is corrupted before using ac_b_ex in
ext4_mb_try_best_found() to avoid allocating blocks from a group with a
corrupted block bitmap in the following concurrency and making the
situation worse.
ext4_mb_regular_allocator
ext4_lock_group(sb, group)
ext4_mb_good_group
// check if the group bbitmap is corrupted
ext4_mb_complex_scan_group
// Scan group gets ac_b_ex but doesn't use it
ext4_unlock_group(sb, group)
ext4_mark_group_bitmap_corrupted(group)
// The block bitmap was corrupted during
// the group unlock gap.
ext4_mb_try_best_found
ext4_lock_group(ac->ac_sb, group)
ext4_mb_use_best_found
mb_mark_used
// Allocating blocks in block bitmap corrupted group |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid allocating blocks from corrupted group in ext4_mb_find_by_goal()
Places the logic for checking if the group's block bitmap is corrupt under
the protection of the group lock to avoid allocating blocks from the group
with a corrupted block bitmap. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/aio: Restrict kiocb_set_cancel_fn() to I/O submitted via libaio
If kiocb_set_cancel_fn() is called for I/O submitted via io_uring, the
following kernel warning appears:
WARNING: CPU: 3 PID: 368 at fs/aio.c:598 kiocb_set_cancel_fn+0x9c/0xa8
Call trace:
kiocb_set_cancel_fn+0x9c/0xa8
ffs_epfile_read_iter+0x144/0x1d0
io_read+0x19c/0x498
io_issue_sqe+0x118/0x27c
io_submit_sqes+0x25c/0x5fc
__arm64_sys_io_uring_enter+0x104/0xab0
invoke_syscall+0x58/0x11c
el0_svc_common+0xb4/0xf4
do_el0_svc+0x2c/0xb0
el0_svc+0x2c/0xa4
el0t_64_sync_handler+0x68/0xb4
el0t_64_sync+0x1a4/0x1a8
Fix this by setting the IOCB_AIO_RW flag for read and write I/O that is
submitted by libaio. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Avoid undefined behavior: applying zero offset to null pointer
ACPICA commit 770653e3ba67c30a629ca7d12e352d83c2541b1e
Before this change we see the following UBSAN stack trace in Fuchsia:
#0 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#1.2 0x000020d0f660777f in ubsan_get_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:41 <libclang_rt.asan.so>+0x3d77f
#1.1 0x000020d0f660777f in maybe_print_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:51 <libclang_rt.asan.so>+0x3d77f
#1 0x000020d0f660777f in ~scoped_report() compiler-rt/lib/ubsan/ubsan_diag.cpp:387 <libclang_rt.asan.so>+0x3d77f
#2 0x000020d0f660b96d in handlepointer_overflow_impl() compiler-rt/lib/ubsan/ubsan_handlers.cpp:809 <libclang_rt.asan.so>+0x4196d
#3 0x000020d0f660b50d in compiler-rt/lib/ubsan/ubsan_handlers.cpp:815 <libclang_rt.asan.so>+0x4150d
#4 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#5 0x000021e4213e2369 in acpi_ds_call_control_method(struct acpi_thread_state*, struct acpi_walk_state*, union acpi_parse_object*) ../../third_party/acpica/source/components/dispatcher/dsmethod.c:605 <platform-bus-x86.so>+0x262369
#6 0x000021e421437fac in acpi_ps_parse_aml(struct acpi_walk_state*) ../../third_party/acpica/source/components/parser/psparse.c:550 <platform-bus-x86.so>+0x2b7fac
#7 0x000021e4214464d2 in acpi_ps_execute_method(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/parser/psxface.c:244 <platform-bus-x86.so>+0x2c64d2
#8 0x000021e4213aa052 in acpi_ns_evaluate(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/namespace/nseval.c:250 <platform-bus-x86.so>+0x22a052
#9 0x000021e421413dd8 in acpi_ns_init_one_device(acpi_handle, u32, void*, void**) ../../third_party/acpica/source/components/namespace/nsinit.c:735 <platform-bus-x86.so>+0x293dd8
#10 0x000021e421429e98 in acpi_ns_walk_namespace(acpi_object_type, acpi_handle, u32, u32, acpi_walk_callback, acpi_walk_callback, void*, void**) ../../third_party/acpica/source/components/namespace/nswalk.c:298 <platform-bus-x86.so>+0x2a9e98
#11 0x000021e4214131ac in acpi_ns_initialize_devices(u32) ../../third_party/acpica/source/components/namespace/nsinit.c:268 <platform-bus-x86.so>+0x2931ac
#12 0x000021e42147c40d in acpi_initialize_objects(u32) ../../third_party/acpica/source/components/utilities/utxfinit.c:304 <platform-bus-x86.so>+0x2fc40d
#13 0x000021e42126d603 in acpi::acpi_impl::initialize_acpi(acpi::acpi_impl*) ../../src/devices/board/lib/acpi/acpi-impl.cc:224 <platform-bus-x86.so>+0xed603
Add a simple check that avoids incrementing a pointer by zero, but
otherwise behaves as before. Note that our findings are against ACPICA
20221020, but the same code exists on master. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: Reinit port->pm on port specific driver unbind
When we unbind a serial port hardware specific 8250 driver, the generic
serial8250 driver takes over the port. After that we see an oops about 10
seconds later. This can produce the following at least on some TI SoCs:
Unhandled fault: imprecise external abort (0x1406)
Internal error: : 1406 [#1] SMP ARM
Turns out that we may still have the serial port hardware specific driver
port->pm in use, and serial8250_pm() tries to call it after the port
specific driver is gone:
serial8250_pm [8250_base] from uart_change_pm+0x54/0x8c [serial_base]
uart_change_pm [serial_base] from uart_hangup+0x154/0x198 [serial_base]
uart_hangup [serial_base] from __tty_hangup.part.0+0x328/0x37c
__tty_hangup.part.0 from disassociate_ctty+0x154/0x20c
disassociate_ctty from do_exit+0x744/0xaac
do_exit from do_group_exit+0x40/0x8c
do_group_exit from __wake_up_parent+0x0/0x1c
Let's fix the issue by calling serial8250_set_defaults() in
serial8250_unregister_port(). This will set the port back to using
the serial8250 default functions, and sets the port->pm to point to
serial8250_pm. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: zero i_disksize when initializing the bootloader inode
If the boot loader inode has never been used before, the
EXT4_IOC_SWAP_BOOT inode will initialize it, including setting the
i_size to 0. However, if the "never before used" boot loader has a
non-zero i_size, then i_disksize will be non-zero, and the
inconsistency between i_size and i_disksize can trigger a kernel
warning:
WARNING: CPU: 0 PID: 2580 at fs/ext4/file.c:319
CPU: 0 PID: 2580 Comm: bb Not tainted 6.3.0-rc1-00004-g703695902cfa
RIP: 0010:ext4_file_write_iter+0xbc7/0xd10
Call Trace:
vfs_write+0x3b1/0x5c0
ksys_write+0x77/0x160
__x64_sys_write+0x22/0x30
do_syscall_64+0x39/0x80
Reproducer:
1. create corrupted image and mount it:
mke2fs -t ext4 /tmp/foo.img 200
debugfs -wR "sif <5> size 25700" /tmp/foo.img
mount -t ext4 /tmp/foo.img /mnt
cd /mnt
echo 123 > file
2. Run the reproducer program:
posix_memalign(&buf, 1024, 1024)
fd = open("file", O_RDWR | O_DIRECT);
ioctl(fd, EXT4_IOC_SWAP_BOOT);
write(fd, buf, 1024);
Fix this by setting i_disksize as well as i_size to zero when
initiaizing the boot loader inode. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix WARNING in ext4_update_inline_data
Syzbot found the following issue:
EXT4-fs (loop0): mounted filesystem 00000000-0000-0000-0000-000000000000 without journal. Quota mode: none.
fscrypt: AES-256-CTS-CBC using implementation "cts-cbc-aes-aesni"
fscrypt: AES-256-XTS using implementation "xts-aes-aesni"
------------[ cut here ]------------
WARNING: CPU: 0 PID: 5071 at mm/page_alloc.c:5525 __alloc_pages+0x30a/0x560 mm/page_alloc.c:5525
Modules linked in:
CPU: 1 PID: 5071 Comm: syz-executor263 Not tainted 6.2.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
RIP: 0010:__alloc_pages+0x30a/0x560 mm/page_alloc.c:5525
RSP: 0018:ffffc90003c2f1c0 EFLAGS: 00010246
RAX: ffffc90003c2f220 RBX: 0000000000000014 RCX: 0000000000000000
RDX: 0000000000000028 RSI: 0000000000000000 RDI: ffffc90003c2f248
RBP: ffffc90003c2f2d8 R08: dffffc0000000000 R09: ffffc90003c2f220
R10: fffff52000785e49 R11: 1ffff92000785e44 R12: 0000000000040d40
R13: 1ffff92000785e40 R14: dffffc0000000000 R15: 1ffff92000785e3c
FS: 0000555556c0d300(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f95d5e04138 CR3: 00000000793aa000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__alloc_pages_node include/linux/gfp.h:237 [inline]
alloc_pages_node include/linux/gfp.h:260 [inline]
__kmalloc_large_node+0x95/0x1e0 mm/slab_common.c:1113
__do_kmalloc_node mm/slab_common.c:956 [inline]
__kmalloc+0xfe/0x190 mm/slab_common.c:981
kmalloc include/linux/slab.h:584 [inline]
kzalloc include/linux/slab.h:720 [inline]
ext4_update_inline_data+0x236/0x6b0 fs/ext4/inline.c:346
ext4_update_inline_dir fs/ext4/inline.c:1115 [inline]
ext4_try_add_inline_entry+0x328/0x990 fs/ext4/inline.c:1307
ext4_add_entry+0x5a4/0xeb0 fs/ext4/namei.c:2385
ext4_add_nondir+0x96/0x260 fs/ext4/namei.c:2772
ext4_create+0x36c/0x560 fs/ext4/namei.c:2817
lookup_open fs/namei.c:3413 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x12ac/0x2dd0 fs/namei.c:3711
do_filp_open+0x264/0x4f0 fs/namei.c:3741
do_sys_openat2+0x124/0x4e0 fs/open.c:1310
do_sys_open fs/open.c:1326 [inline]
__do_sys_openat fs/open.c:1342 [inline]
__se_sys_openat fs/open.c:1337 [inline]
__x64_sys_openat+0x243/0x290 fs/open.c:1337
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Above issue happens as follows:
ext4_iget
ext4_find_inline_data_nolock ->i_inline_off=164 i_inline_size=60
ext4_try_add_inline_entry
__ext4_mark_inode_dirty
ext4_expand_extra_isize_ea ->i_extra_isize=32 s_want_extra_isize=44
ext4_xattr_shift_entries
->after shift i_inline_off is incorrect, actually is change to 176
ext4_try_add_inline_entry
ext4_update_inline_dir
get_max_inline_xattr_value_size
if (EXT4_I(inode)->i_inline_off)
entry = (struct ext4_xattr_entry *)((void *)raw_inode +
EXT4_I(inode)->i_inline_off);
free += EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
->As entry is incorrect, then 'free' may be negative
ext4_update_inline_data
value = kzalloc(len, GFP_NOFS);
-> len is unsigned int, maybe very large, then trigger warning when
'kzalloc()'
To resolve the above issue we need to update 'i_inline_off' after
'ext4_xattr_shift_entries()'. We do not need to set
EXT4_STATE_MAY_INLINE_DATA flag here, since ext4_mark_inode_dirty()
already sets this flag if needed. Setting EXT4_STATE_MAY_INLINE_DATA
when it is needed may trigger a BUG_ON in ext4_writepages(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Perform lockless command completion in abort path
While adding and removing the controller, the following call trace was
observed:
WARNING: CPU: 3 PID: 623596 at kernel/dma/mapping.c:532 dma_free_attrs+0x33/0x50
CPU: 3 PID: 623596 Comm: sh Kdump: loaded Not tainted 5.14.0-96.el9.x86_64 #1
RIP: 0010:dma_free_attrs+0x33/0x50
Call Trace:
qla2x00_async_sns_sp_done+0x107/0x1b0 [qla2xxx]
qla2x00_abort_srb+0x8e/0x250 [qla2xxx]
? ql_dbg+0x70/0x100 [qla2xxx]
__qla2x00_abort_all_cmds+0x108/0x190 [qla2xxx]
qla2x00_abort_all_cmds+0x24/0x70 [qla2xxx]
qla2x00_abort_isp_cleanup+0x305/0x3e0 [qla2xxx]
qla2x00_remove_one+0x364/0x400 [qla2xxx]
pci_device_remove+0x36/0xa0
__device_release_driver+0x17a/0x230
device_release_driver+0x24/0x30
pci_stop_bus_device+0x68/0x90
pci_stop_and_remove_bus_device_locked+0x16/0x30
remove_store+0x75/0x90
kernfs_fop_write_iter+0x11c/0x1b0
new_sync_write+0x11f/0x1b0
vfs_write+0x1eb/0x280
ksys_write+0x5f/0xe0
do_syscall_64+0x5c/0x80
? do_user_addr_fault+0x1d8/0x680
? do_syscall_64+0x69/0x80
? exc_page_fault+0x62/0x140
? asm_exc_page_fault+0x8/0x30
entry_SYSCALL_64_after_hwframe+0x44/0xae
The command was completed in the abort path during driver unload with a
lock held, causing the warning in abort path. Hence complete the command
without any lock held. |
| In the Linux kernel, the following vulnerability has been resolved:
ca8210: fix mac_len negative array access
This patch fixes a buffer overflow access of skb->data if
ieee802154_hdr_peek_addrs() fails. |