| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in ofono, an Open Source Telephony on Linux. A stack overflow bug is triggered within the decode_deliver_report() function during the SMS decoding. It is assumed that the attack scenario is accessible from a compromised modem, a malicious base station, or just SMS. There is a bound check for this memcpy length in decode_submit(), but it was forgotten in decode_deliver_report(). |
| A flaw was found in ofono, an Open Source Telephony on Linux. A stack overflow bug is triggered within the decode_submit_report() function during the SMS decoding. It is assumed that the attack scenario is accessible from a compromised modem, a malicious base station, or just SMS. There is a bound check for this memcpy length in decode_submit(), but it was forgotten in decode_submit_report(). |
| A flaw was found in ofono, an Open Source Telephony on Linux. A stack overflow bug is triggered within the sms_decode_address_field() function during the SMS PDU decoding. It is assumed that the attack scenario is accessible from a compromised modem, a malicious base station, or just SMS. |
| A flaw was found in ofono, an Open Source Telephony on Linux. A stack overflow bug is triggered within the decode_status_report() function during the SMS decoding. It is assumed that the attack scenario is accessible from a compromised modem, a malicious base station, or just SMS. There is a bound check for this memcpy length in decode_submit(), but it was forgotten in decode_status_report(). |
| Espeak-ng 1.52-dev was discovered to contain a Buffer Overflow via the function ReadClause at readclause.c. |
| Arm provides multiple helpers to clean & invalidate the cache
for a given region. This is, for instance, used when allocating
guest memory to ensure any writes (such as the ones during scrubbing)
have reached memory before handing over the page to a guest.
Unfortunately, the arithmetics in the helpers can overflow and would
then result to skip the cache cleaning/invalidation. Therefore there
is no guarantee when all the writes will reach the memory.
This undefined behavior was meant to be addressed by XSA-437, but the
approach was not sufficient. |
| EDK2's Network Package is susceptible to a buffer overflow vulnerability when
handling Server ID option
from a DHCPv6 proxy Advertise message. This
vulnerability can be exploited by an attacker to gain unauthorized
access and potentially lead to a loss of Confidentiality, Integrity and/or Availability. |
| EDK2's Network Package is susceptible to a buffer overflow vulnerability when processing DNS Servers option from a DHCPv6 Advertise message. This
vulnerability can be exploited by an attacker to gain unauthorized
access and potentially lead to a loss of Confidentiality, Integrity and/or Availability. |
| EDK2's Network Package is susceptible to a buffer overflow vulnerability via a long server ID option in DHCPv6 client. This
vulnerability can be exploited by an attacker to gain unauthorized
access and potentially lead to a loss of Confidentiality, Integrity and/or Availability. |
| EDK2's Network Package is susceptible to an out-of-bounds read
vulnerability when processing the IA_NA or IA_TA option in a DHCPv6 Advertise message. This
vulnerability can be exploited by an attacker to gain unauthorized
access and potentially lead to a loss of Confidentiality. |
| Multiple out-of-bounds write vulnerabilities exist in the LXT2 parsing functionality of GTKWave 3.3.115. A specially-crafted .lxt2 file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds write perfomed by the string copy loop. |
| Multiple out-of-bounds write vulnerabilities exist in the LXT2 parsing functionality of GTKWave 3.3.115. A specially-crafted .lxt2 file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds write perfomed by the prefix copy loop. |
| An out-of-bounds write vulnerability exists in the LXT2 zlib block decompression functionality of GTKWave 3.3.115. A specially crafted .lxt2 file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger this vulnerability. |
| Multiple out-of-bounds write vulnerabilities exist in the VZT vzt_rd_get_facname decompression functionality of GTKWave 3.3.115. A specially crafted .vzt file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds write perfomed by the string copy loop. |
| Multiple out-of-bounds write vulnerabilities exist in the VZT vzt_rd_get_facname decompression functionality of GTKWave 3.3.115. A specially crafted .vzt file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds write perfomed by the prefix copy loop. |
| Multiple out-of-bounds read vulnerabilities exist in the VCD var definition section functionality of GTKWave 3.3.115. A specially crafted .vcd file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds write when triggered via the vcd2lxt conversion utility. |
| Multiple out-of-bounds read vulnerabilities exist in the VCD var definition section functionality of GTKWave 3.3.115. A specially crafted .vcd file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds write when triggered via the vcd2lxt2 conversion utility. |
| Multiple out-of-bounds read vulnerabilities exist in the VCD var definition section functionality of GTKWave 3.3.115. A specially crafted .vcd file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds write when triggered via the vcd2vzt conversion utility. |
| Multiple out-of-bounds read vulnerabilities exist in the VCD var definition section functionality of GTKWave 3.3.115. A specially crafted .vcd file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds read when triggered via the GUI's interactive VCD parsing code. |
| Multiple out-of-bounds read vulnerabilities exist in the VCD var definition section functionality of GTKWave 3.3.115. A specially crafted .vcd file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger these vulnerabilities.This vulnerability concerns the out-of-bounds read when triggered via the GUI's legacy VCD parsing code. |