| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix general protection fault in nilfs_btree_insert()
If nilfs2 reads a corrupted disk image and tries to reads a b-tree node
block by calling __nilfs_btree_get_block() against an invalid virtual
block address, it returns -ENOENT because conversion of the virtual block
address to a disk block address fails. However, this return value is the
same as the internal code that b-tree lookup routines return to indicate
that the block being searched does not exist, so functions that operate on
that b-tree may misbehave.
When nilfs_btree_insert() receives this spurious 'not found' code from
nilfs_btree_do_lookup(), it misunderstands that the 'not found' check was
successful and continues the insert operation using incomplete lookup path
data, causing the following crash:
general protection fault, probably for non-canonical address
0xdffffc0000000005: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
...
RIP: 0010:nilfs_btree_get_nonroot_node fs/nilfs2/btree.c:418 [inline]
RIP: 0010:nilfs_btree_prepare_insert fs/nilfs2/btree.c:1077 [inline]
RIP: 0010:nilfs_btree_insert+0x6d3/0x1c10 fs/nilfs2/btree.c:1238
Code: bc 24 80 00 00 00 4c 89 f8 48 c1 e8 03 42 80 3c 28 00 74 08 4c 89
ff e8 4b 02 92 fe 4d 8b 3f 49 83 c7 28 4c 89 f8 48 c1 e8 03 <42> 80 3c
28 00 74 08 4c 89 ff e8 2e 02 92 fe 4d 8b 3f 49 83 c7 02
...
Call Trace:
<TASK>
nilfs_bmap_do_insert fs/nilfs2/bmap.c:121 [inline]
nilfs_bmap_insert+0x20d/0x360 fs/nilfs2/bmap.c:147
nilfs_get_block+0x414/0x8d0 fs/nilfs2/inode.c:101
__block_write_begin_int+0x54c/0x1a80 fs/buffer.c:1991
__block_write_begin fs/buffer.c:2041 [inline]
block_write_begin+0x93/0x1e0 fs/buffer.c:2102
nilfs_write_begin+0x9c/0x110 fs/nilfs2/inode.c:261
generic_perform_write+0x2e4/0x5e0 mm/filemap.c:3772
__generic_file_write_iter+0x176/0x400 mm/filemap.c:3900
generic_file_write_iter+0xab/0x310 mm/filemap.c:3932
call_write_iter include/linux/fs.h:2186 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x7dc/0xc50 fs/read_write.c:584
ksys_write+0x177/0x2a0 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
...
</TASK>
This patch fixes the root cause of this problem by replacing the error
code that __nilfs_btree_get_block() returns on block address conversion
failure from -ENOENT to another internal code -EINVAL which means that the
b-tree metadata is corrupted.
By returning -EINVAL, it propagates without glitches, and for all relevant
b-tree operations, functions in the upper bmap layer output an error
message indicating corrupted b-tree metadata via
nilfs_bmap_convert_error(), and code -EIO will be eventually returned as
it should be. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: require CAP_NET_ADMIN to attach N_GSM0710 ldisc
Any unprivileged user can attach N_GSM0710 ldisc, but it requires
CAP_NET_ADMIN to create a GSM network anyway.
Require initial namespace CAP_NET_ADMIN to do that. |
| In the Linux kernel, the following vulnerability has been resolved:
atl1c: Work around the DMA RX overflow issue
This is based on alx driver commit 881d0327db37 ("net: alx: Work around
the DMA RX overflow issue").
The alx and atl1c drivers had RX overflow error which was why a custom
allocator was created to avoid certain addresses. The simpler workaround
then created for alx driver, but not for atl1c due to lack of tester.
Instead of using a custom allocator, check the allocated skb address and
use skb_reserve() to move away from problematic 0x...fc0 address.
Tested on AR8131 on Acer 4540. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Detect IP == ksym.end as part of BPF program
Now that bpf_throw kfunc is the first such call instruction that has
noreturn semantics within the verifier, this also kicks in dead code
elimination in unprecedented ways. For one, any instruction following
a bpf_throw call will never be marked as seen. Moreover, if a callchain
ends up throwing, any instructions after the call instruction to the
eventually throwing subprog in callers will also never be marked as
seen.
The tempting way to fix this would be to emit extra 'int3' instructions
which bump the jited_len of a program, and ensure that during runtime
when a program throws, we can discover its boundaries even if the call
instruction to bpf_throw (or to subprogs that always throw) is emitted
as the final instruction in the program.
An example of such a program would be this:
do_something():
...
r0 = 0
exit
foo():
r1 = 0
call bpf_throw
r0 = 0
exit
bar(cond):
if r1 != 0 goto pc+2
call do_something
exit
call foo
r0 = 0 // Never seen by verifier
exit //
main(ctx):
r1 = ...
call bar
r0 = 0
exit
Here, if we do end up throwing, the stacktrace would be the following:
bpf_throw
foo
bar
main
In bar, the final instruction emitted will be the call to foo, as such,
the return address will be the subsequent instruction (which the JIT
emits as int3 on x86). This will end up lying outside the jited_len of
the program, thus, when unwinding, we will fail to discover the return
address as belonging to any program and end up in a panic due to the
unreliable stack unwinding of BPF programs that we never expect.
To remedy this case, make bpf_prog_ksym_find treat IP == ksym.end as
part of the BPF program, so that is_bpf_text_address returns true when
such a case occurs, and we are able to unwind reliably when the final
instruction ends up being a call instruction. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: aqc111: check packet for fixup for true limit
If a device sends a packet that is inbetween 0
and sizeof(u64) the value passed to skb_trim()
as length will wrap around ending up as some very
large value.
The driver will then proceed to parse the header
located at that position, which will either oops or
process some random value.
The fix is to check against sizeof(u64) rather than
0, which the driver currently does. The issue exists
since the introduction of the driver. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: disallow timeout for anonymous sets
Never used from userspace, disallow these parameters. |
| In the Linux kernel, the following vulnerability has been resolved:
reiserfs: Avoid touching renamed directory if parent does not change
The VFS will not be locking moved directory if its parent does not
change. Change reiserfs rename code to avoid touching renamed directory
if its parent does not change as without locking that can corrupt the
filesystem. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: sun6i: reduce DMA RX transfer width to single byte
Through empirical testing it has been determined that sometimes RX SPI
transfers with DMA enabled return corrupted data. This is down to single
or even multiple bytes lost during DMA transfer from SPI peripheral to
memory. It seems the RX FIFO within the SPI peripheral can become
confused when performing bus read accesses wider than a single byte to it
during an active SPI transfer.
This patch reduces the width of individual DMA read accesses to the
RX FIFO to a single byte to mitigate that issue. |
| The Stop User Enumeration WordPress plugin before version 1.7.3 blocks REST API /wp-json/wp/v2/users/ requests for non-authorized users. However, this can be bypassed by URL-encoding the API path. |
| Exposure of sensitive information to an unauthorized actor in Windows Kernel allows an authorized attacker to disclose information locally. |
| Improper access control in Azure Notification Service allows an authorized attacker to elevate privileges over a network. |
| Improper access control in Azure Event Grid allows an unauthorized attacker to elevate privileges over a network. |
| Improper input validation in Microsoft Exchange Server allows an unauthorized attacker to perform spoofing over a network. |
| Improper input validation in Microsoft Windows Search Component allows an authorized attacker to deny service locally. |
| Exposure of sensitive information to an unauthorized actor in Windows Failover Cluster allows an authorized attacker to disclose information locally. |
| Improper input validation in Windows Kernel allows an authorized attacker to elevate privileges locally. |
| Exposure of sensitive information to an unauthorized actor in Windows File Explorer allows an unauthorized attacker to perform spoofing over a network. |
| Exposure of sensitive information to an unauthorized actor in Windows Kernel allows an authorized attacker to disclose information locally. |
| Improper access control in Windows Error Reporting allows an authorized attacker to elevate privileges locally. |
| Improper input validation in Windows Error Reporting allows an authorized attacker to elevate privileges locally. |