| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Replace mutex with rwlock to avoid sleep in atomic context
The current use of a mutex to protect the notifier hashtable accesses
can lead to issues in the atomic context. It results in the below
kernel warnings:
| BUG: sleeping function called from invalid context at kernel/locking/mutex.c:258
| in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 9, name: kworker/0:0
| preempt_count: 1, expected: 0
| RCU nest depth: 0, expected: 0
| CPU: 0 UID: 0 PID: 9 Comm: kworker/0:0 Not tainted 6.14.0 #4
| Workqueue: ffa_pcpu_irq_notification notif_pcpu_irq_work_fn
| Call trace:
| show_stack+0x18/0x24 (C)
| dump_stack_lvl+0x78/0x90
| dump_stack+0x18/0x24
| __might_resched+0x114/0x170
| __might_sleep+0x48/0x98
| mutex_lock+0x24/0x80
| handle_notif_callbacks+0x54/0xe0
| notif_get_and_handle+0x40/0x88
| generic_exec_single+0x80/0xc0
| smp_call_function_single+0xfc/0x1a0
| notif_pcpu_irq_work_fn+0x2c/0x38
| process_one_work+0x14c/0x2b4
| worker_thread+0x2e4/0x3e0
| kthread+0x13c/0x210
| ret_from_fork+0x10/0x20
To address this, replace the mutex with an rwlock to protect the notifier
hashtable accesses. This ensures that read-side locking does not sleep and
multiple readers can acquire the lock concurrently, avoiding unnecessary
contention and potential deadlocks. Writer access remains exclusive,
preserving correctness.
This change resolves warnings from lockdep about potential sleep in
atomic context. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vmalloc: fix data race in show_numa_info()
The following data-race was found in show_numa_info():
==================================================================
BUG: KCSAN: data-race in vmalloc_info_show / vmalloc_info_show
read to 0xffff88800971fe30 of 4 bytes by task 8289 on cpu 0:
show_numa_info mm/vmalloc.c:4936 [inline]
vmalloc_info_show+0x5a8/0x7e0 mm/vmalloc.c:5016
seq_read_iter+0x373/0xb40 fs/seq_file.c:230
proc_reg_read_iter+0x11e/0x170 fs/proc/inode.c:299
....
write to 0xffff88800971fe30 of 4 bytes by task 8287 on cpu 1:
show_numa_info mm/vmalloc.c:4934 [inline]
vmalloc_info_show+0x38f/0x7e0 mm/vmalloc.c:5016
seq_read_iter+0x373/0xb40 fs/seq_file.c:230
proc_reg_read_iter+0x11e/0x170 fs/proc/inode.c:299
....
value changed: 0x0000008f -> 0x00000000
==================================================================
According to this report,there is a read/write data-race because
m->private is accessible to multiple CPUs. To fix this, instead of
allocating the heap in proc_vmalloc_init() and passing the heap address to
m->private, vmalloc_info_show() should allocate the heap. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: cs40l50-vibra - fix potential NULL dereference in cs40l50_upload_owt()
The cs40l50_upload_owt() function allocates memory via kmalloc()
without checking for allocation failure, which could lead to a
NULL pointer dereference.
Return -ENOMEM in case allocation fails. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix warning when reconnecting channel
When reconnecting a channel in smb2_reconnect_server(), a dummy tcon
is passed down to smb2_reconnect() with ->query_interface
uninitialized, so we can't call queue_delayed_work() on it.
Fix the following warning by ensuring that we're queueing the delayed
worker from correct tcon.
WARNING: CPU: 4 PID: 1126 at kernel/workqueue.c:2498 __queue_delayed_work+0x1d2/0x200
Modules linked in: cifs cifs_arc4 nls_ucs2_utils cifs_md4 [last unloaded: cifs]
CPU: 4 UID: 0 PID: 1126 Comm: kworker/4:0 Not tainted 6.16.0-rc3 #5 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-4.fc42 04/01/2014
Workqueue: cifsiod smb2_reconnect_server [cifs]
RIP: 0010:__queue_delayed_work+0x1d2/0x200
Code: 41 5e 41 5f e9 7f ee ff ff 90 0f 0b 90 e9 5d ff ff ff bf 02 00
00 00 e8 6c f3 07 00 89 c3 eb bd 90 0f 0b 90 e9 57 f> 0b 90 e9 65 fe
ff ff 90 0f 0b 90 e9 72 fe ff ff 90 0f 0b 90 e9
RSP: 0018:ffffc900014afad8 EFLAGS: 00010003
RAX: 0000000000000000 RBX: ffff888124d99988 RCX: ffffffff81399cc1
RDX: dffffc0000000000 RSI: ffff888114326e00 RDI: ffff888124d999f0
RBP: 000000000000ea60 R08: 0000000000000001 R09: ffffed10249b3331
R10: ffff888124d9998f R11: 0000000000000004 R12: 0000000000000040
R13: ffff888114326e00 R14: ffff888124d999d8 R15: ffff888114939020
FS: 0000000000000000(0000) GS:ffff88829f7fe000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffe7a2b4038 CR3: 0000000120a6f000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
queue_delayed_work_on+0xb4/0xc0
smb2_reconnect+0xb22/0xf50 [cifs]
smb2_reconnect_server+0x413/0xd40 [cifs]
? __pfx_smb2_reconnect_server+0x10/0x10 [cifs]
? local_clock_noinstr+0xd/0xd0
? local_clock+0x15/0x30
? lock_release+0x29b/0x390
process_one_work+0x4c5/0xa10
? __pfx_process_one_work+0x10/0x10
? __list_add_valid_or_report+0x37/0x120
worker_thread+0x2f1/0x5a0
? __kthread_parkme+0xde/0x100
? __pfx_worker_thread+0x10/0x10
kthread+0x1fe/0x380
? kthread+0x10f/0x380
? __pfx_kthread+0x10/0x10
? local_clock_noinstr+0xd/0xd0
? ret_from_fork+0x1b/0x1f0
? local_clock+0x15/0x30
? lock_release+0x29b/0x390
? rcu_is_watching+0x20/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork+0x15b/0x1f0
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
irq event stamp: 1116206
hardirqs last enabled at (1116205): [<ffffffff8143af42>] __up_console_sem+0x52/0x60
hardirqs last disabled at (1116206): [<ffffffff81399f0e>] queue_delayed_work_on+0x6e/0xc0
softirqs last enabled at (1116138): [<ffffffffc04562fd>] __smb_send_rqst+0x42d/0x950 [cifs]
softirqs last disabled at (1116136): [<ffffffff823d35e1>] release_sock+0x21/0xf0 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: appletb-kbd: fix slab use-after-free bug in appletb_kbd_probe
In probe appletb_kbd_probe() a "struct appletb_kbd *kbd" is allocated
via devm_kzalloc() to store touch bar keyboard related data.
Later on if backlight_device_get_by_name() finds a backlight device
with name "appletb_backlight" a timer (kbd->inactivity_timer) is setup
with appletb_inactivity_timer() and the timer is armed to run after
appletb_tb_dim_timeout (60) seconds.
A use-after-free is triggered when failure occurs after the timer is
armed. This ultimately means probe failure occurs and as a result the
"struct appletb_kbd *kbd" which is device managed memory is freed.
After 60 seconds the timer will have expired and __run_timers will
attempt to access the timer (kbd->inactivity_timer) however the kdb
structure has been freed causing a use-after free.
[ 71.636938] ==================================================================
[ 71.637915] BUG: KASAN: slab-use-after-free in __run_timers+0x7ad/0x890
[ 71.637915] Write of size 8 at addr ffff8881178c5958 by task swapper/1/0
[ 71.637915]
[ 71.637915] CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Not tainted 6.16.0-rc2-00318-g739a6c93cc75-dirty #12 PREEMPT(voluntary)
[ 71.637915] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 71.637915] Call Trace:
[ 71.637915] <IRQ>
[ 71.637915] dump_stack_lvl+0x53/0x70
[ 71.637915] print_report+0xce/0x670
[ 71.637915] ? __run_timers+0x7ad/0x890
[ 71.637915] kasan_report+0xce/0x100
[ 71.637915] ? __run_timers+0x7ad/0x890
[ 71.637915] __run_timers+0x7ad/0x890
[ 71.637915] ? __pfx___run_timers+0x10/0x10
[ 71.637915] ? update_process_times+0xfc/0x190
[ 71.637915] ? __pfx_update_process_times+0x10/0x10
[ 71.637915] ? _raw_spin_lock_irq+0x80/0xe0
[ 71.637915] ? _raw_spin_lock_irq+0x80/0xe0
[ 71.637915] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 71.637915] run_timer_softirq+0x141/0x240
[ 71.637915] ? __pfx_run_timer_softirq+0x10/0x10
[ 71.637915] ? __pfx___hrtimer_run_queues+0x10/0x10
[ 71.637915] ? kvm_clock_get_cycles+0x18/0x30
[ 71.637915] ? ktime_get+0x60/0x140
[ 71.637915] handle_softirqs+0x1b8/0x5c0
[ 71.637915] ? __pfx_handle_softirqs+0x10/0x10
[ 71.637915] irq_exit_rcu+0xaf/0xe0
[ 71.637915] sysvec_apic_timer_interrupt+0x6c/0x80
[ 71.637915] </IRQ>
[ 71.637915]
[ 71.637915] Allocated by task 39:
[ 71.637915] kasan_save_stack+0x33/0x60
[ 71.637915] kasan_save_track+0x14/0x30
[ 71.637915] __kasan_kmalloc+0x8f/0xa0
[ 71.637915] __kmalloc_node_track_caller_noprof+0x195/0x420
[ 71.637915] devm_kmalloc+0x74/0x1e0
[ 71.637915] appletb_kbd_probe+0x37/0x3c0
[ 71.637915] hid_device_probe+0x2d1/0x680
[ 71.637915] really_probe+0x1c3/0x690
[ 71.637915] __driver_probe_device+0x247/0x300
[ 71.637915] driver_probe_device+0x49/0x210
[...]
[ 71.637915]
[ 71.637915] Freed by task 39:
[ 71.637915] kasan_save_stack+0x33/0x60
[ 71.637915] kasan_save_track+0x14/0x30
[ 71.637915] kasan_save_free_info+0x3b/0x60
[ 71.637915] __kasan_slab_free+0x37/0x50
[ 71.637915] kfree+0xcf/0x360
[ 71.637915] devres_release_group+0x1f8/0x3c0
[ 71.637915] hid_device_probe+0x315/0x680
[ 71.637915] really_probe+0x1c3/0x690
[ 71.637915] __driver_probe_device+0x247/0x300
[ 71.637915] driver_probe_device+0x49/0x210
[...]
The root cause of the issue is that the timer is not disarmed
on failure paths leading to it remaining active and accessing
freed memory. To fix this call timer_delete_sync() to deactivate
the timer.
Another small issue is that timer_delete_sync is called
unconditionally in appletb_kbd_remove(), fix this by checking
for a valid kbd->backlight_dev before calling timer_delete_sync. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: chipidea: udc: disconnect/reconnect from host when do suspend/resume
Shawn and John reported a hang issue during system suspend as below:
- USB gadget is enabled as Ethernet
- There is data transfer over USB Ethernet (scp a big file between host
and device)
- Device is going in/out suspend (echo mem > /sys/power/state)
The root cause is the USB device controller is suspended but the USB bus
is still active which caused the USB host continues to transfer data with
device and the device continues to queue USB requests (in this case, a
delayed TCP ACK packet trigger the issue) after controller is suspended,
however the USB controller clock is already gated off. Then if udc driver
access registers after that point, the system will hang.
The correct way to avoid such issue is to disconnect device from host when
the USB bus is not at suspend state. Then the host will receive disconnect
event and stop data transfer in time. To continue make USB gadget device
work after system resume, this will reconnect device automatically.
To make usb wakeup work if USB bus is already at suspend state, this will
keep connection for it only when USB device controller has enabled wakeup
capability. |
| In the Linux kernel, the following vulnerability has been resolved:
optee: ffa: fix sleep in atomic context
The OP-TEE driver registers the function notif_callback() for FF-A
notifications. However, this function is called in an atomic context
leading to errors like this when processing asynchronous notifications:
| BUG: sleeping function called from invalid context at kernel/locking/mutex.c:258
| in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 9, name: kworker/0:0
| preempt_count: 1, expected: 0
| RCU nest depth: 0, expected: 0
| CPU: 0 UID: 0 PID: 9 Comm: kworker/0:0 Not tainted 6.14.0-00019-g657536ebe0aa #13
| Hardware name: linux,dummy-virt (DT)
| Workqueue: ffa_pcpu_irq_notification notif_pcpu_irq_work_fn
| Call trace:
| show_stack+0x18/0x24 (C)
| dump_stack_lvl+0x78/0x90
| dump_stack+0x18/0x24
| __might_resched+0x114/0x170
| __might_sleep+0x48/0x98
| mutex_lock+0x24/0x80
| optee_get_msg_arg+0x7c/0x21c
| simple_call_with_arg+0x50/0xc0
| optee_do_bottom_half+0x14/0x20
| notif_callback+0x3c/0x48
| handle_notif_callbacks+0x9c/0xe0
| notif_get_and_handle+0x40/0x88
| generic_exec_single+0x80/0xc0
| smp_call_function_single+0xfc/0x1a0
| notif_pcpu_irq_work_fn+0x2c/0x38
| process_one_work+0x14c/0x2b4
| worker_thread+0x2e4/0x3e0
| kthread+0x13c/0x210
| ret_from_fork+0x10/0x20
Fix this by adding work queue to process the notification in a
non-atomic context. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/mlx5: Fix potential deadlock in MR deregistration
The issue arises when kzalloc() is invoked while holding umem_mutex or
any other lock acquired under umem_mutex. This is problematic because
kzalloc() can trigger fs_reclaim_aqcuire(), which may, in turn, invoke
mmu_notifier_invalidate_range_start(). This function can lead to
mlx5_ib_invalidate_range(), which attempts to acquire umem_mutex again,
resulting in a deadlock.
The problematic flow:
CPU0 | CPU1
---------------------------------------|------------------------------------------------
mlx5_ib_dereg_mr() |
→ revoke_mr() |
→ mutex_lock(&umem_odp->umem_mutex) |
| mlx5_mkey_cache_init()
| → mutex_lock(&dev->cache.rb_lock)
| → mlx5r_cache_create_ent_locked()
| → kzalloc(GFP_KERNEL)
| → fs_reclaim()
| → mmu_notifier_invalidate_range_start()
| → mlx5_ib_invalidate_range()
| → mutex_lock(&umem_odp->umem_mutex)
→ cache_ent_find_and_store() |
→ mutex_lock(&dev->cache.rb_lock) |
Additionally, when kzalloc() is called from within
cache_ent_find_and_store(), we encounter the same deadlock due to
re-acquisition of umem_mutex.
Solve by releasing umem_mutex in dereg_mr() after umr_revoke_mr()
and before acquiring rb_lock. This ensures that we don't hold
umem_mutex while performing memory allocations that could trigger
the reclaim path.
This change prevents the deadlock by ensuring proper lock ordering and
avoiding holding locks during memory allocation operations that could
trigger the reclaim path.
The following lockdep warning demonstrates the deadlock:
python3/20557 is trying to acquire lock:
ffff888387542128 (&umem_odp->umem_mutex){+.+.}-{4:4}, at:
mlx5_ib_invalidate_range+0x5b/0x550 [mlx5_ib]
but task is already holding lock:
ffffffff82f6b840 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}, at:
unmap_vmas+0x7b/0x1a0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}:
fs_reclaim_acquire+0x60/0xd0
mem_cgroup_css_alloc+0x6f/0x9b0
cgroup_init_subsys+0xa4/0x240
cgroup_init+0x1c8/0x510
start_kernel+0x747/0x760
x86_64_start_reservations+0x25/0x30
x86_64_start_kernel+0x73/0x80
common_startup_64+0x129/0x138
-> #2 (fs_reclaim){+.+.}-{0:0}:
fs_reclaim_acquire+0x91/0xd0
__kmalloc_cache_noprof+0x4d/0x4c0
mlx5r_cache_create_ent_locked+0x75/0x620 [mlx5_ib]
mlx5_mkey_cache_init+0x186/0x360 [mlx5_ib]
mlx5_ib_stage_post_ib_reg_umr_init+0x3c/0x60 [mlx5_ib]
__mlx5_ib_add+0x4b/0x190 [mlx5_ib]
mlx5r_probe+0xd9/0x320 [mlx5_ib]
auxiliary_bus_probe+0x42/0x70
really_probe+0xdb/0x360
__driver_probe_device+0x8f/0x130
driver_probe_device+0x1f/0xb0
__driver_attach+0xd4/0x1f0
bus_for_each_dev+0x79/0xd0
bus_add_driver+0xf0/0x200
driver_register+0x6e/0xc0
__auxiliary_driver_register+0x6a/0xc0
do_one_initcall+0x5e/0x390
do_init_module+0x88/0x240
init_module_from_file+0x85/0xc0
idempotent_init_module+0x104/0x300
__x64_sys_finit_module+0x68/0xc0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
-> #1 (&dev->cache.rb_lock){+.+.}-{4:4}:
__mutex_lock+0x98/0xf10
__mlx5_ib_dereg_mr+0x6f2/0x890 [mlx5_ib]
mlx5_ib_dereg_mr+0x21/0x110 [mlx5_ib]
ib_dereg_mr_user+0x85/0x1f0 [ib_core]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
HID: appletb-kbd: fix memory corruption of input_handler_list
In appletb_kbd_probe an input handler is initialised and then registered
with input core through input_register_handler(). When this happens input
core will add the input handler (specifically its node) to the global
input_handler_list. The input_handler_list is central to the functionality
of input core and is traversed in various places in input core. An example
of this is when a new input device is plugged in and gets registered with
input core.
The input_handler in probe is allocated as device managed memory. If a
probe failure occurs after input_register_handler() the input_handler
memory is freed, yet it will remain in the input_handler_list. This
effectively means the input_handler_list contains a dangling pointer
to data belonging to a freed input handler.
This causes an issue when any other input device is plugged in - in my
case I had an old PixArt HP USB optical mouse and I decided to
plug it in after a failure occurred after input_register_handler().
This lead to the registration of this input device via
input_register_device which involves traversing over every handler
in the corrupted input_handler_list and calling input_attach_handler(),
giving each handler a chance to bind to newly registered device.
The core of this bug is a UAF which causes memory corruption of
input_handler_list and to fix it we must ensure the input handler is
unregistered from input core, this is done through
input_unregister_handler().
[ 63.191597] ==================================================================
[ 63.192094] BUG: KASAN: slab-use-after-free in input_attach_handler.isra.0+0x1a9/0x1e0
[ 63.192094] Read of size 8 at addr ffff888105ea7c80 by task kworker/0:2/54
[ 63.192094]
[ 63.192094] CPU: 0 UID: 0 PID: 54 Comm: kworker/0:2 Not tainted 6.16.0-rc2-00321-g2aa6621d
[ 63.192094] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.164
[ 63.192094] Workqueue: usb_hub_wq hub_event
[ 63.192094] Call Trace:
[ 63.192094] <TASK>
[ 63.192094] dump_stack_lvl+0x53/0x70
[ 63.192094] print_report+0xce/0x670
[ 63.192094] kasan_report+0xce/0x100
[ 63.192094] input_attach_handler.isra.0+0x1a9/0x1e0
[ 63.192094] input_register_device+0x76c/0xd00
[ 63.192094] hidinput_connect+0x686d/0xad60
[ 63.192094] hid_connect+0xf20/0x1b10
[ 63.192094] hid_hw_start+0x83/0x100
[ 63.192094] hid_device_probe+0x2d1/0x680
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] hid_add_device+0x30b/0x910
[ 63.192094] usbhid_probe+0x920/0xe00
[ 63.192094] usb_probe_interface+0x363/0x9a0
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] usb_set_configuration+0xd14/0x1880
[ 63.192094] usb_generic_driver_probe+0x78/0xb0
[ 63.192094] usb_probe_device+0xaa/0x2e0
[ 63.192094] really_probe+0x1c3/0x690
[ 63.192094] __driver_probe_device+0x247/0x300
[ 63.192094] driver_probe_device+0x49/0x210
[ 63.192094] __device_attach_driver+0x160/0x320
[ 63.192094] bus_for_each_drv+0x10f/0x190
[ 63.192094] __device_attach+0x18e/0x370
[ 63.192094] bus_probe_device+0x123/0x170
[ 63.192094] device_add+0xd4d/0x1460
[ 63.192094] usb_new_device+0x7b4/0x1000
[ 63.192094] hub_event+0x234d/0x3
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: fix suspicious RCU usage warning
When I run the NVME over TCP test in virtme-ng, I get the following
"suspicious RCU usage" warning in nvme_mpath_add_sysfs_link():
'''
[ 5.024557][ T44] nvmet: Created nvm controller 1 for subsystem nqn.2025-06.org.nvmexpress.mptcp for NQN nqn.2014-08.org.nvmexpress:uuid:f7f6b5e0-ff97-4894-98ac-c85309e0bc77.
[ 5.027401][ T183] nvme nvme0: creating 2 I/O queues.
[ 5.029017][ T183] nvme nvme0: mapped 2/0/0 default/read/poll queues.
[ 5.032587][ T183] nvme nvme0: new ctrl: NQN "nqn.2025-06.org.nvmexpress.mptcp", addr 127.0.0.1:4420, hostnqn: nqn.2014-08.org.nvmexpress:uuid:f7f6b5e0-ff97-4894-98ac-c85309e0bc77
[ 5.042214][ T25]
[ 5.042440][ T25] =============================
[ 5.042579][ T25] WARNING: suspicious RCU usage
[ 5.042705][ T25] 6.16.0-rc3+ #23 Not tainted
[ 5.042812][ T25] -----------------------------
[ 5.042934][ T25] drivers/nvme/host/multipath.c:1203 RCU-list traversed in non-reader section!!
[ 5.043111][ T25]
[ 5.043111][ T25] other info that might help us debug this:
[ 5.043111][ T25]
[ 5.043341][ T25]
[ 5.043341][ T25] rcu_scheduler_active = 2, debug_locks = 1
[ 5.043502][ T25] 3 locks held by kworker/u9:0/25:
[ 5.043615][ T25] #0: ffff888008730948 ((wq_completion)async){+.+.}-{0:0}, at: process_one_work+0x7ed/0x1350
[ 5.043830][ T25] #1: ffffc900001afd40 ((work_completion)(&entry->work)){+.+.}-{0:0}, at: process_one_work+0xcf3/0x1350
[ 5.044084][ T25] #2: ffff888013ee0020 (&head->srcu){.+.+}-{0:0}, at: nvme_mpath_add_sysfs_link.part.0+0xb4/0x3a0
[ 5.044300][ T25]
[ 5.044300][ T25] stack backtrace:
[ 5.044439][ T25] CPU: 0 UID: 0 PID: 25 Comm: kworker/u9:0 Not tainted 6.16.0-rc3+ #23 PREEMPT(full)
[ 5.044441][ T25] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 5.044442][ T25] Workqueue: async async_run_entry_fn
[ 5.044445][ T25] Call Trace:
[ 5.044446][ T25] <TASK>
[ 5.044449][ T25] dump_stack_lvl+0x6f/0xb0
[ 5.044453][ T25] lockdep_rcu_suspicious.cold+0x4f/0xb1
[ 5.044457][ T25] nvme_mpath_add_sysfs_link.part.0+0x2fb/0x3a0
[ 5.044459][ T25] ? queue_work_on+0x90/0xf0
[ 5.044461][ T25] ? lockdep_hardirqs_on+0x78/0x110
[ 5.044466][ T25] nvme_mpath_set_live+0x1e9/0x4f0
[ 5.044470][ T25] nvme_mpath_add_disk+0x240/0x2f0
[ 5.044472][ T25] ? __pfx_nvme_mpath_add_disk+0x10/0x10
[ 5.044475][ T25] ? add_disk_fwnode+0x361/0x580
[ 5.044480][ T25] nvme_alloc_ns+0x81c/0x17c0
[ 5.044483][ T25] ? kasan_quarantine_put+0x104/0x240
[ 5.044487][ T25] ? __pfx_nvme_alloc_ns+0x10/0x10
[ 5.044495][ T25] ? __pfx_nvme_find_get_ns+0x10/0x10
[ 5.044496][ T25] ? rcu_read_lock_any_held+0x45/0xa0
[ 5.044498][ T25] ? validate_chain+0x232/0x4f0
[ 5.044503][ T25] nvme_scan_ns+0x4c8/0x810
[ 5.044506][ T25] ? __pfx_nvme_scan_ns+0x10/0x10
[ 5.044508][ T25] ? find_held_lock+0x2b/0x80
[ 5.044512][ T25] ? ktime_get+0x16d/0x220
[ 5.044517][ T25] ? kvm_clock_get_cycles+0x18/0x30
[ 5.044520][ T25] ? __pfx_nvme_scan_ns_async+0x10/0x10
[ 5.044522][ T25] async_run_entry_fn+0x97/0x560
[ 5.044523][ T25] ? rcu_is_watching+0x12/0xc0
[ 5.044526][ T25] process_one_work+0xd3c/0x1350
[ 5.044532][ T25] ? __pfx_process_one_work+0x10/0x10
[ 5.044536][ T25] ? assign_work+0x16c/0x240
[ 5.044539][ T25] worker_thread+0x4da/0xd50
[ 5.044545][ T25] ? __pfx_worker_thread+0x10/0x10
[ 5.044546][ T25] kthread+0x356/0x5c0
[ 5.044548][ T25] ? __pfx_kthread+0x10/0x10
[ 5.044549][ T25] ? ret_from_fork+0x1b/0x2e0
[ 5.044552][ T25] ? __lock_release.isra.0+0x5d/0x180
[ 5.044553][ T25] ? ret_from_fork+0x1b/0x2e0
[ 5.044555][ T25] ? rcu_is_watching+0x12/0xc0
[ 5.044557][ T25] ? __pfx_kthread+0x10/0x10
[ 5.04
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix regression with native SMB symlinks
Some users and customers reported that their backup/copy tools started
to fail when the directory being copied contained symlink targets that
the client couldn't parse - even when those symlinks weren't followed.
Fix this by allowing lstat(2) and readlink(2) to succeed even when the
client can't resolve the symlink target, restoring old behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: ep: Update read pointer only after buffer is written
Inside mhi_ep_ring_add_element, the read pointer (rd_offset) is updated
before the buffer is written, potentially causing race conditions where
the host sees an updated read pointer before the buffer is actually
written. Updating rd_offset prematurely can lead to the host accessing
an uninitialized or incomplete element, resulting in data corruption.
Invoke the buffer write before updating rd_offset to ensure the element
is fully written before signaling its availability. |
| In the Linux kernel, the following vulnerability has been resolved:
video: screen_info: Relocate framebuffers behind PCI bridges
Apply PCI host-bridge window offsets to screen_info framebuffers. Fixes
invalid access to I/O memory.
Resources behind a PCI host bridge can be relocated by a certain offset
in the kernel's CPU address range used for I/O. The framebuffer memory
range stored in screen_info refers to the CPU addresses as seen during
boot (where the offset is 0). During boot up, firmware may assign a
different memory offset to the PCI host bridge and thereby relocating
the framebuffer address of the PCI graphics device as seen by the kernel.
The information in screen_info must be updated as well.
The helper pcibios_bus_to_resource() performs the relocation of the
screen_info's framebuffer resource (given in PCI bus addresses). The
result matches the I/O-memory resource of the PCI graphics device (given
in CPU addresses). As before, we store away the information necessary to
later update the information in screen_info itself.
Commit 78aa89d1dfba ("firmware/sysfb: Update screen_info for relocated
EFI framebuffers") added the code for updating screen_info. It is based
on similar functionality that pre-existed in efifb. Efifb uses a pointer
to the PCI resource, while the newer code does a memcpy of the region.
Hence efifb sees any updates to the PCI resource and avoids the issue.
v3:
- Only use struct pci_bus_region for PCI bus addresses (Bjorn)
- Clarify address semantics in commit messages and comments (Bjorn)
v2:
- Fixed tags (Takashi, Ivan)
- Updated information on efifb |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Add basic validation for RAS header
If RAS header read from EEPROM is corrupted, it could result in trying
to allocate huge memory for reading the records. Add some validation to
header fields. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd9375: Fix double free of regulator supplies
Driver gets regulator supplies in probe path with
devm_regulator_bulk_get(), so should not call regulator_bulk_free() in
error and remove paths to avoid double free. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: pmf: Use device managed allocations
If setting up smart PC fails for any reason then this can lead to
a double free when unloading amd-pmf. This is because dev->buf was
freed but never set to NULL and is again freed in amd_pmf_remove().
To avoid subtle allocation bugs in failures leading to a double free
change all allocations into device managed allocations. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix eswitch code memory leak in reset scenario
Add simple eswitch mode checker in attaching VF procedure and allocate
required port representor memory structures only in switchdev mode.
The reset flows triggers VF (if present) detach/attach procedure.
It might involve VF port representor(s) re-creation if the device is
configured is switchdev mode (not legacy one).
The memory was blindly allocated in current implementation,
regardless of the mode and not freed if in legacy mode.
Kmemeleak trace:
unreferenced object (percpu) 0x7e3bce5b888458 (size 40):
comm "bash", pid 1784, jiffies 4295743894
hex dump (first 32 bytes on cpu 45):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 0):
pcpu_alloc_noprof+0x4c4/0x7c0
ice_repr_create+0x66/0x130 [ice]
ice_repr_create_vf+0x22/0x70 [ice]
ice_eswitch_attach_vf+0x1b/0xa0 [ice]
ice_reset_all_vfs+0x1dd/0x2f0 [ice]
ice_pci_err_resume+0x3b/0xb0 [ice]
pci_reset_function+0x8f/0x120
reset_store+0x56/0xa0
kernfs_fop_write_iter+0x120/0x1b0
vfs_write+0x31c/0x430
ksys_write+0x61/0xd0
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Testing hints (ethX is PF netdev):
- create at least one VF
echo 1 > /sys/class/net/ethX/device/sriov_numvfs
- trigger the reset
echo 1 > /sys/class/net/ethX/device/reset |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix GCC_GCC_PCIE_HOT_RST definition for WCN7850
GCC_GCC_PCIE_HOT_RST is wrongly defined for WCN7850, causing kernel crash
on some specific platforms.
Since this register is divergent for WCN7850 and QCN9274, move it to
register table to allow different definitions. Then correct the register
address for WCN7850 to fix this issue.
Note IPQ5332 is not affected as it is not PCIe based device.
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3 |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: xsk: rx: fix the frame's length check
When calling buf_to_xdp, the len argument is the frame data's length
without virtio header's length (vi->hdr_len). We check that len with
xsk_pool_get_rx_frame_size() + vi->hdr_len
to ensure the provided len does not larger than the allocated chunk
size. The additional vi->hdr_len is because in virtnet_add_recvbuf_xsk,
we use part of XDP_PACKET_HEADROOM for virtio header and ask the vhost
to start placing data from
hard_start + XDP_PACKET_HEADROOM - vi->hdr_len
not
hard_start + XDP_PACKET_HEADROOM
But the first buffer has virtio_header, so the maximum frame's length in
the first buffer can only be
xsk_pool_get_rx_frame_size()
not
xsk_pool_get_rx_frame_size() + vi->hdr_len
like in the current check.
This commit adds an additional argument to buf_to_xdp differentiate
between the first buffer and other ones to correctly calculate the maximum
frame's length. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix double put of request
If a netfs request finishes during the pause loop, it will have the ref
that belongs to the IN_PROGRESS flag removed at that point - however, if it
then goes to the final wait loop, that will *also* put the ref because it
sees that the IN_PROGRESS flag is clear and incorrectly assumes that this
happened when it called the collector.
In fact, since IN_PROGRESS is clear, we shouldn't call the collector again
since it's done all the cleanup, such as calling ->ki_complete().
Fix this by making netfs_collect_in_app() just return, indicating that
we're done if IN_PROGRESS is removed. |