| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ptdma: pt_core_execute_cmd() should use spinlock
The interrupt handler (pt_core_irq_handler()) of the ptdma
driver can be called from interrupt context. The code flow
in this function can lead down to pt_core_execute_cmd() which
will attempt to grab a mutex, which is not appropriate in
interrupt context and ultimately leads to a kernel panic.
The fix here changes this mutex to a spinlock, which has
been verified to resolve the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock between concurrent dio writes when low on free data space
When reserving data space for a direct IO write we can end up deadlocking
if we have multiple tasks attempting a write to the same file range, there
are multiple extents covered by that file range, we are low on available
space for data and the writes don't expand the inode's i_size.
The deadlock can happen like this:
1) We have a file with an i_size of 1M, at offset 0 it has an extent with
a size of 128K and at offset 128K it has another extent also with a
size of 128K;
2) Task A does a direct IO write against file range [0, 256K), and because
the write is within the i_size boundary, it takes the inode's lock (VFS
level) in shared mode;
3) Task A locks the file range [0, 256K) at btrfs_dio_iomap_begin(), and
then gets the extent map for the extent covering the range [0, 128K).
At btrfs_get_blocks_direct_write(), it creates an ordered extent for
that file range ([0, 128K));
4) Before returning from btrfs_dio_iomap_begin(), it unlocks the file
range [0, 256K);
5) Task A executes btrfs_dio_iomap_begin() again, this time for the file
range [128K, 256K), and locks the file range [128K, 256K);
6) Task B starts a direct IO write against file range [0, 256K) as well.
It also locks the inode in shared mode, as it's within the i_size limit,
and then tries to lock file range [0, 256K). It is able to lock the
subrange [0, 128K) but then blocks waiting for the range [128K, 256K),
as it is currently locked by task A;
7) Task A enters btrfs_get_blocks_direct_write() and tries to reserve data
space. Because we are low on available free space, it triggers the
async data reclaim task, and waits for it to reserve data space;
8) The async reclaim task decides to wait for all existing ordered extents
to complete (through btrfs_wait_ordered_roots()).
It finds the ordered extent previously created by task A for the file
range [0, 128K) and waits for it to complete;
9) The ordered extent for the file range [0, 128K) can not complete
because it blocks at btrfs_finish_ordered_io() when trying to lock the
file range [0, 128K).
This results in a deadlock, because:
- task B is holding the file range [0, 128K) locked, waiting for the
range [128K, 256K) to be unlocked by task A;
- task A is holding the file range [128K, 256K) locked and it's waiting
for the async data reclaim task to satisfy its space reservation
request;
- the async data reclaim task is waiting for ordered extent [0, 128K)
to complete, but the ordered extent can not complete because the
file range [0, 128K) is currently locked by task B, which is waiting
on task A to unlock file range [128K, 256K) and task A waiting
on the async data reclaim task.
This results in a deadlock between 4 task: task A, task B, the async
data reclaim task and the task doing ordered extent completion (a work
queue task).
This type of deadlock can sporadically be triggered by the test case
generic/300 from fstests, and results in a stack trace like the following:
[12084.033689] INFO: task kworker/u16:7:123749 blocked for more than 241 seconds.
[12084.034877] Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.035562] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.036548] task:kworker/u16:7 state:D stack: 0 pid:123749 ppid: 2 flags:0x00004000
[12084.036554] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[12084.036599] Call Trace:
[12084.036601] <TASK>
[12084.036606] __schedule+0x3cb/0xed0
[12084.036616] schedule+0x4e/0xb0
[12084.036620] btrfs_start_ordered_extent+0x109/0x1c0 [btrfs]
[12084.036651] ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.036659] btrfs_run_ordered_extent_work+0x1a/0x30 [btrfs]
[12084.036688] btrfs_work_helper+0xf8/0x400 [btrfs]
[12084.0367
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: prevent kernel crash when rmmod mtk-vcodec-dec.ko
If the driver support subdev mode, the parameter "dev->pm.dev" will be
NULL in mtk_vcodec_dec_remove. Kernel will crash when try to rmmod
mtk-vcodec-dec.ko.
[ 4380.702726] pc : do_raw_spin_trylock+0x4/0x80
[ 4380.707075] lr : _raw_spin_lock_irq+0x90/0x14c
[ 4380.711509] sp : ffff80000819bc10
[ 4380.714811] x29: ffff80000819bc10 x28: ffff3600c03e4000 x27: 0000000000000000
[ 4380.721934] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
[ 4380.729057] x23: ffff3600c0f34930 x22: ffffd5e923549000 x21: 0000000000000220
[ 4380.736179] x20: 0000000000000208 x19: ffffd5e9213e8ebc x18: 0000000000000020
[ 4380.743298] x17: 0000002000000000 x16: ffffd5e9213e8e90 x15: 696c346f65646976
[ 4380.750420] x14: 0000000000000000 x13: 0000000000000001 x12: 0000000000000040
[ 4380.757542] x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
[ 4380.764664] x8 : 0000000000000000 x7 : ffff3600c7273ae8 x6 : ffffd5e9213e8ebc
[ 4380.771786] x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
[ 4380.778908] x2 : 0000000000000000 x1 : ffff3600c03e4000 x0 : 0000000000000208
[ 4380.786031] Call trace:
[ 4380.788465] do_raw_spin_trylock+0x4/0x80
[ 4380.792462] __pm_runtime_disable+0x2c/0x1b0
[ 4380.796723] mtk_vcodec_dec_remove+0x5c/0xa0 [mtk_vcodec_dec]
[ 4380.802466] platform_remove+0x2c/0x60
[ 4380.806204] __device_release_driver+0x194/0x250
[ 4380.810810] driver_detach+0xc8/0x15c
[ 4380.814462] bus_remove_driver+0x5c/0xb0
[ 4380.818375] driver_unregister+0x34/0x64
[ 4380.822288] platform_driver_unregister+0x18/0x24
[ 4380.826979] mtk_vcodec_dec_driver_exit+0x1c/0x888 [mtk_vcodec_dec]
[ 4380.833240] __arm64_sys_delete_module+0x190/0x224
[ 4380.838020] invoke_syscall+0x48/0x114
[ 4380.841760] el0_svc_common.constprop.0+0x60/0x11c
[ 4380.846540] do_el0_svc+0x28/0x90
[ 4380.849844] el0_svc+0x4c/0x100
[ 4380.852975] el0t_64_sync_handler+0xec/0xf0
[ 4380.857148] el0t_64_sync+0x190/0x194
[ 4380.860801] Code: 94431515 17ffffca d503201f d503245f (b9400004) |
| In the Linux kernel, the following vulnerability has been resolved:
nvdimm: Fix firmware activation deadlock scenarios
Lockdep reports the following deadlock scenarios for CXL root device
power-management, device_prepare(), operations, and device_shutdown()
operations for 'nd_region' devices:
Chain exists of:
&nvdimm_region_key --> &nvdimm_bus->reconfig_mutex --> system_transition_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(system_transition_mutex);
lock(&nvdimm_bus->reconfig_mutex);
lock(system_transition_mutex);
lock(&nvdimm_region_key);
Chain exists of:
&cxl_nvdimm_bridge_key --> acpi_scan_lock --> &cxl_root_key
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&cxl_root_key);
lock(acpi_scan_lock);
lock(&cxl_root_key);
lock(&cxl_nvdimm_bridge_key);
These stem from holding nvdimm_bus_lock() over hibernate_quiet_exec()
which walks the entire system device topology taking device_lock() along
the way. The nvdimm_bus_lock() is protecting against unregistration,
multiple simultaneous ops callers, and preventing activate_show() from
racing activate_store(). For the first 2, the lock is redundant.
Unregistration already flushes all ops users, and sysfs already prevents
multiple threads to be active in an ops handler at the same time. For
the last userspace should already be waiting for its last
activate_store() to complete, and does not need activate_show() to flush
the write side, so this lock usage can be deleted in these attributes. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: fix deadlock caused by calling printk() under tty_port->lock
pty_write() invokes kmalloc() which may invoke a normal printk() to print
failure message. This can cause a deadlock in the scenario reported by
syz-bot below:
CPU0 CPU1 CPU2
---- ---- ----
lock(console_owner);
lock(&port_lock_key);
lock(&port->lock);
lock(&port_lock_key);
lock(&port->lock);
lock(console_owner);
As commit dbdda842fe96 ("printk: Add console owner and waiter logic to
load balance console writes") said, such deadlock can be prevented by
using printk_deferred() in kmalloc() (which is invoked in the section
guarded by the port->lock). But there are too many printk() on the
kmalloc() path, and kmalloc() can be called from anywhere, so changing
printk() to printk_deferred() is too complicated and inelegant.
Therefore, this patch chooses to specify __GFP_NOWARN to kmalloc(), so
that printk() will not be called, and this deadlock problem can be
avoided.
Syzbot reported the following lockdep error:
======================================================
WARNING: possible circular locking dependency detected
5.4.143-00237-g08ccc19a-dirty #10 Not tainted
------------------------------------------------------
syz-executor.4/29420 is trying to acquire lock:
ffffffff8aedb2a0 (console_owner){....}-{0:0}, at: console_trylock_spinning kernel/printk/printk.c:1752 [inline]
ffffffff8aedb2a0 (console_owner){....}-{0:0}, at: vprintk_emit+0x2ca/0x470 kernel/printk/printk.c:2023
but task is already holding lock:
ffff8880119c9158 (&port->lock){-.-.}-{2:2}, at: pty_write+0xf4/0x1f0 drivers/tty/pty.c:120
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&port->lock){-.-.}-{2:2}:
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0x35/0x50 kernel/locking/spinlock.c:159
tty_port_tty_get drivers/tty/tty_port.c:288 [inline] <-- lock(&port->lock);
tty_port_default_wakeup+0x1d/0xb0 drivers/tty/tty_port.c:47
serial8250_tx_chars+0x530/0xa80 drivers/tty/serial/8250/8250_port.c:1767
serial8250_handle_irq.part.0+0x31f/0x3d0 drivers/tty/serial/8250/8250_port.c:1854
serial8250_handle_irq drivers/tty/serial/8250/8250_port.c:1827 [inline] <-- lock(&port_lock_key);
serial8250_default_handle_irq+0xb2/0x220 drivers/tty/serial/8250/8250_port.c:1870
serial8250_interrupt+0xfd/0x200 drivers/tty/serial/8250/8250_core.c:126
__handle_irq_event_percpu+0x109/0xa50 kernel/irq/handle.c:156
[...]
-> #1 (&port_lock_key){-.-.}-{2:2}:
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0x35/0x50 kernel/locking/spinlock.c:159
serial8250_console_write+0x184/0xa40 drivers/tty/serial/8250/8250_port.c:3198
<-- lock(&port_lock_key);
call_console_drivers kernel/printk/printk.c:1819 [inline]
console_unlock+0x8cb/0xd00 kernel/printk/printk.c:2504
vprintk_emit+0x1b5/0x470 kernel/printk/printk.c:2024 <-- lock(console_owner);
vprintk_func+0x8d/0x250 kernel/printk/printk_safe.c:394
printk+0xba/0xed kernel/printk/printk.c:2084
register_console+0x8b3/0xc10 kernel/printk/printk.c:2829
univ8250_console_init+0x3a/0x46 drivers/tty/serial/8250/8250_core.c:681
console_init+0x49d/0x6d3 kernel/printk/printk.c:2915
start_kernel+0x5e9/0x879 init/main.c:713
secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:241
-> #0 (console_owner){....}-{0:0}:
[...]
lock_acquire+0x127/0x340 kernel/locking/lockdep.c:4734
console_trylock_spinning kernel/printk/printk.c:1773
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix potential deadlock in blk_ia_range_sysfs_show()
When being read, a sysfs attribute is already protected against removal
with the kobject node active reference counter. As a result, in
blk_ia_range_sysfs_show(), there is no need to take the queue sysfs
lock when reading the value of a range attribute. Using the queue sysfs
lock in this function creates a potential deadlock situation with the
disk removal, something that a lockdep signals with a splat when the
device is removed:
[ 760.703551] Possible unsafe locking scenario:
[ 760.703551]
[ 760.703554] CPU0 CPU1
[ 760.703556] ---- ----
[ 760.703558] lock(&q->sysfs_lock);
[ 760.703565] lock(kn->active#385);
[ 760.703573] lock(&q->sysfs_lock);
[ 760.703579] lock(kn->active#385);
[ 760.703587]
[ 760.703587] *** DEADLOCK ***
Solve this by removing the mutex_lock()/mutex_unlock() calls from
blk_ia_range_sysfs_show(). |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: fix deadlock in __device_attach
In __device_attach function, The lock holding logic is as follows:
...
__device_attach
device_lock(dev) // get lock dev
async_schedule_dev(__device_attach_async_helper, dev); // func
async_schedule_node
async_schedule_node_domain(func)
entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
/* when fail or work limit, sync to execute func, but
__device_attach_async_helper will get lock dev as
well, which will lead to A-A deadlock. */
if (!entry || atomic_read(&entry_count) > MAX_WORK) {
func;
else
queue_work_node(node, system_unbound_wq, &entry->work)
device_unlock(dev)
As shown above, when it is allowed to do async probes, because of
out of memory or work limit, async work is not allowed, to do
sync execute instead. it will lead to A-A deadlock because of
__device_attach_async_helper getting lock dev.
To fix the deadlock, move the async_schedule_dev outside device_lock,
as we can see, in async_schedule_node_domain, the parameter of
queue_work_node is system_unbound_wq, so it can accept concurrent
operations. which will also not change the code logic, and will
not lead to deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
bcache: avoid journal no-space deadlock by reserving 1 journal bucket
The journal no-space deadlock was reported time to time. Such deadlock
can happen in the following situation.
When all journal buckets are fully filled by active jset with heavy
write I/O load, the cache set registration (after a reboot) will load
all active jsets and inserting them into the btree again (which is
called journal replay). If a journaled bkey is inserted into a btree
node and results btree node split, new journal request might be
triggered. For example, the btree grows one more level after the node
split, then the root node record in cache device super block will be
upgrade by bch_journal_meta() from bch_btree_set_root(). But there is no
space in journal buckets, the journal replay has to wait for new journal
bucket to be reclaimed after at least one journal bucket replayed. This
is one example that how the journal no-space deadlock happens.
The solution to avoid the deadlock is to reserve 1 journal bucket in
run time, and only permit the reserved journal bucket to be used during
cache set registration procedure for things like journal replay. Then
the journal space will never be fully filled, there is no chance for
journal no-space deadlock to happen anymore.
This patch adds a new member "bool do_reserve" in struct journal, it is
inititalized to 0 (false) when struct journal is allocated, and set to
1 (true) by bch_journal_space_reserve() when all initialization done in
run_cache_set(). In the run time when journal_reclaim() tries to
allocate a new journal bucket, free_journal_buckets() is called to check
whether there are enough free journal buckets to use. If there is only
1 free journal bucket and journal->do_reserve is 1 (true), the last
bucket is reserved and free_journal_buckets() will return 0 to indicate
no free journal bucket. Then journal_reclaim() will give up, and try
next time to see whetheer there is free journal bucket to allocate. By
this method, there is always 1 jouranl bucket reserved in run time.
During the cache set registration, journal->do_reserve is 0 (false), so
the reserved journal bucket can be used to avoid the no-space deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Don't hold the layoutget locks across multiple RPC calls
When doing layoutget as part of the open() compound, we have to be
careful to release the layout locks before we can call any further RPC
calls, such as setattr(). The reason is that those calls could trigger
a recall, which could deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: staging: rtl8192bs: Fix deadlock in rtw_joinbss_event_prehandle()
There is a deadlock in rtw_joinbss_event_prehandle(), which is shown
below:
(Thread 1) | (Thread 2)
| _set_timer()
rtw_joinbss_event_prehandle()| mod_timer()
spin_lock_bh() //(1) | (wait a time)
... | _rtw_join_timeout_handler()
del_timer_sync() | spin_lock_bh() //(2)
(wait timer to stop) | ...
We hold pmlmepriv->lock in position (1) of thread 1 and
use del_timer_sync() to wait timer to stop, but timer handler
also need pmlmepriv->lock in position (2) of thread 2.
As a result, rtw_joinbss_event_prehandle() will block forever.
This patch extracts del_timer_sync() from the protection of
spin_lock_bh(), which could let timer handler to obtain
the needed lock. What`s more, we change spin_lock_bh() to
spin_lock_irq() in _rtw_join_timeout_handler() in order to
prevent deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix possible deadlock when holding Fwb to get inline_data
1, mount with wsync.
2, create a file with O_RDWR, and the request was sent to mds.0:
ceph_atomic_open()-->
ceph_mdsc_do_request(openc)
finish_open(file, dentry, ceph_open)-->
ceph_open()-->
ceph_init_file()-->
ceph_init_file_info()-->
ceph_uninline_data()-->
{
...
if (inline_version == 1 || /* initial version, no data */
inline_version == CEPH_INLINE_NONE)
goto out_unlock;
...
}
The inline_version will be 1, which is the initial version for the
new create file. And here the ci->i_inline_version will keep with 1,
it's buggy.
3, buffer write to the file immediately:
ceph_write_iter()-->
ceph_get_caps(file, need=Fw, want=Fb, ...);
generic_perform_write()-->
a_ops->write_begin()-->
ceph_write_begin()-->
netfs_write_begin()-->
netfs_begin_read()-->
netfs_rreq_submit_slice()-->
netfs_read_from_server()-->
rreq->netfs_ops->issue_read()-->
ceph_netfs_issue_read()-->
{
...
if (ci->i_inline_version != CEPH_INLINE_NONE &&
ceph_netfs_issue_op_inline(subreq))
return;
...
}
ceph_put_cap_refs(ci, Fwb);
The ceph_netfs_issue_op_inline() will send a getattr(Fsr) request to
mds.1.
4, then the mds.1 will request the rd lock for CInode::filelock from
the auth mds.0, the mds.0 will do the CInode::filelock state transation
from excl --> sync, but it need to revoke the Fxwb caps back from the
clients.
While the kernel client has aleady held the Fwb caps and waiting for
the getattr(Fsr).
It's deadlock!
URL: https://tracker.ceph.com/issues/55377 |
| In the Linux kernel, the following vulnerability has been resolved:
ath11k: Fix frames flush failure caused by deadlock
We are seeing below warnings:
kernel: [25393.301506] ath11k_pci 0000:01:00.0: failed to flush mgmt transmit queue 0
kernel: [25398.421509] ath11k_pci 0000:01:00.0: failed to flush mgmt transmit queue 0
kernel: [25398.421831] ath11k_pci 0000:01:00.0: dropping mgmt frame for vdev 0, is_started 0
this means ath11k fails to flush mgmt. frames because wmi_mgmt_tx_work
has no chance to run in 5 seconds.
By setting /proc/sys/kernel/hung_task_timeout_secs to 20 and increasing
ATH11K_FLUSH_TIMEOUT to 50 we get below warnings:
kernel: [ 120.763160] INFO: task wpa_supplicant:924 blocked for more than 20 seconds.
kernel: [ 120.763169] Not tainted 5.10.90 #12
kernel: [ 120.763177] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
kernel: [ 120.763186] task:wpa_supplicant state:D stack: 0 pid: 924 ppid: 1 flags:0x000043a0
kernel: [ 120.763201] Call Trace:
kernel: [ 120.763214] __schedule+0x785/0x12fa
kernel: [ 120.763224] ? lockdep_hardirqs_on_prepare+0xe2/0x1bb
kernel: [ 120.763242] schedule+0x7e/0xa1
kernel: [ 120.763253] schedule_timeout+0x98/0xfe
kernel: [ 120.763266] ? run_local_timers+0x4a/0x4a
kernel: [ 120.763291] ath11k_mac_flush_tx_complete+0x197/0x2b1 [ath11k 13c3a9bf37790f4ac8103b3decf7ab4008ac314a]
kernel: [ 120.763306] ? init_wait_entry+0x2e/0x2e
kernel: [ 120.763343] __ieee80211_flush_queues+0x167/0x21f [mac80211 335da900954f1c5ea7f1613d92088ce83342042c]
kernel: [ 120.763378] __ieee80211_recalc_idle+0x105/0x125 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c]
kernel: [ 120.763411] ieee80211_recalc_idle+0x14/0x27 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c]
kernel: [ 120.763441] ieee80211_free_chanctx+0x77/0xa2 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c]
kernel: [ 120.763473] __ieee80211_vif_release_channel+0x100/0x131 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c]
kernel: [ 120.763540] ieee80211_vif_release_channel+0x66/0x81 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c]
kernel: [ 120.763572] ieee80211_destroy_auth_data+0xa3/0xe6 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c]
kernel: [ 120.763612] ieee80211_mgd_deauth+0x178/0x29b [mac80211 335da900954f1c5ea7f1613d92088ce83342042c]
kernel: [ 120.763654] cfg80211_mlme_deauth+0x1a8/0x22c [cfg80211 8945aa5bc2af5f6972336665d8ad6f9c191ad5be]
kernel: [ 120.763697] nl80211_deauthenticate+0xfa/0x123 [cfg80211 8945aa5bc2af5f6972336665d8ad6f9c191ad5be]
kernel: [ 120.763715] genl_rcv_msg+0x392/0x3c2
kernel: [ 120.763750] ? nl80211_associate+0x432/0x432 [cfg80211 8945aa5bc2af5f6972336665d8ad6f9c191ad5be]
kernel: [ 120.763782] ? nl80211_associate+0x432/0x432 [cfg80211 8945aa5bc2af5f6972336665d8ad6f9c191ad5be]
kernel: [ 120.763802] ? genl_rcv+0x36/0x36
kernel: [ 120.763814] netlink_rcv_skb+0x89/0xf7
kernel: [ 120.763829] genl_rcv+0x28/0x36
kernel: [ 120.763840] netlink_unicast+0x179/0x24b
kernel: [ 120.763854] netlink_sendmsg+0x393/0x401
kernel: [ 120.763872] sock_sendmsg+0x72/0x76
kernel: [ 120.763886] ____sys_sendmsg+0x170/0x1e6
kernel: [ 120.763897] ? copy_msghdr_from_user+0x7a/0xa2
kernel: [ 120.763914] ___sys_sendmsg+0x95/0xd1
kernel: [ 120.763940] __sys_sendmsg+0x85/0xbf
kernel: [ 120.763956] do_syscall_64+0x43/0x55
kernel: [ 120.763966] entry_SYSCALL_64_after_hwframe+0x44/0xa9
kernel: [ 120.763977] RIP: 0033:0x79089f3fcc83
kernel: [ 120.763986] RSP: 002b:00007ffe604f0508 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
kernel: [ 120.763997] RAX: ffffffffffffffda RBX: 000059b40e987690 RCX: 000079089f3fcc83
kernel: [ 120.764006] RDX: 0000000000000000 RSI: 00007ffe604f0558 RDI: 0000000000000009
kernel: [ 120.764014] RBP: 00007ffe604f0540 R08: 0000000000000004 R09: 0000000000400000
kernel: [ 120.764023] R10: 00007ffe604f0638 R11: 0000000000000246 R12: 000059b40ea04980
kernel: [ 120.764032] R13: 00007ffe604
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix deadlock in concurrent rename whiteout and inode writeback
Following hung tasks:
[ 77.028764] task:kworker/u8:4 state:D stack: 0 pid: 132
[ 77.028820] Call Trace:
[ 77.029027] schedule+0x8c/0x1b0
[ 77.029067] mutex_lock+0x50/0x60
[ 77.029074] ubifs_write_inode+0x68/0x1f0 [ubifs]
[ 77.029117] __writeback_single_inode+0x43c/0x570
[ 77.029128] writeback_sb_inodes+0x259/0x740
[ 77.029148] wb_writeback+0x107/0x4d0
[ 77.029163] wb_workfn+0x162/0x7b0
[ 92.390442] task:aa state:D stack: 0 pid: 1506
[ 92.390448] Call Trace:
[ 92.390458] schedule+0x8c/0x1b0
[ 92.390461] wb_wait_for_completion+0x82/0xd0
[ 92.390469] __writeback_inodes_sb_nr+0xb2/0x110
[ 92.390472] writeback_inodes_sb_nr+0x14/0x20
[ 92.390476] ubifs_budget_space+0x705/0xdd0 [ubifs]
[ 92.390503] do_rename.cold+0x7f/0x187 [ubifs]
[ 92.390549] ubifs_rename+0x8b/0x180 [ubifs]
[ 92.390571] vfs_rename+0xdb2/0x1170
[ 92.390580] do_renameat2+0x554/0x770
, are caused by concurrent rename whiteout and inode writeback processes:
rename_whiteout(Thread 1) wb_workfn(Thread2)
ubifs_rename
do_rename
lock_4_inodes (Hold ui_mutex)
ubifs_budget_space
make_free_space
shrink_liability
__writeback_inodes_sb_nr
bdi_split_work_to_wbs (Queue new wb work)
wb_do_writeback(wb work)
__writeback_single_inode
ubifs_write_inode
LOCK(ui_mutex)
↑
wb_wait_for_completion (Wait wb work) <-- deadlock!
Reproducer (Detail program in [Link]):
1. SYS_renameat2("/mp/dir/file", "/mp/dir/whiteout", RENAME_WHITEOUT)
2. Consume out of space before kernel(mdelay) doing budget for whiteout
Fix it by doing whiteout space budget before locking ubifs inodes.
BTW, it also fixes wrong goto tag 'out_release' in whiteout budget
error handling path(It should at least recover dir i_size and unlock
4 ubifs inodes). |
| In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: fix truesize for mb-xdp-pass case
When mb-xdp is set and return is XDP_PASS, packet is converted from
xdp_buff to sk_buff with xdp_update_skb_shared_info() in
bnxt_xdp_build_skb().
bnxt_xdp_build_skb() passes incorrect truesize argument to
xdp_update_skb_shared_info().
The truesize is calculated as BNXT_RX_PAGE_SIZE * sinfo->nr_frags but
the skb_shared_info was wiped by napi_build_skb() before.
So it stores sinfo->nr_frags before bnxt_xdp_build_skb() and use it
instead of getting skb_shared_info from xdp_get_shared_info_from_buff().
Splat looks like:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 0 at net/core/skbuff.c:6072 skb_try_coalesce+0x504/0x590
Modules linked in: xt_nat xt_tcpudp veth af_packet xt_conntrack nft_chain_nat xt_MASQUERADE nf_conntrack_netlink xfrm_user xt_addrtype nft_coms
CPU: 2 UID: 0 PID: 0 Comm: swapper/2 Not tainted 6.14.0-rc2+ #3
RIP: 0010:skb_try_coalesce+0x504/0x590
Code: 4b fd ff ff 49 8b 34 24 40 80 e6 40 0f 84 3d fd ff ff 49 8b 74 24 48 40 f6 c6 01 0f 84 2e fd ff ff 48 8d 4e ff e9 25 fd ff ff <0f> 0b e99
RSP: 0018:ffffb62c4120caa8 EFLAGS: 00010287
RAX: 0000000000000003 RBX: ffffb62c4120cb14 RCX: 0000000000000ec0
RDX: 0000000000001000 RSI: ffffa06e5d7dc000 RDI: 0000000000000003
RBP: ffffa06e5d7ddec0 R08: ffffa06e6120a800 R09: ffffa06e7a119900
R10: 0000000000002310 R11: ffffa06e5d7dcec0 R12: ffffe4360575f740
R13: ffffe43600000000 R14: 0000000000000002 R15: 0000000000000002
FS: 0000000000000000(0000) GS:ffffa0755f700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f147b76b0f8 CR3: 00000001615d4000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<IRQ>
? __warn+0x84/0x130
? skb_try_coalesce+0x504/0x590
? report_bug+0x18a/0x1a0
? handle_bug+0x53/0x90
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? skb_try_coalesce+0x504/0x590
inet_frag_reasm_finish+0x11f/0x2e0
ip_defrag+0x37a/0x900
ip_local_deliver+0x51/0x120
ip_sublist_rcv_finish+0x64/0x70
ip_sublist_rcv+0x179/0x210
ip_list_rcv+0xf9/0x130
How to reproduce:
<Node A>
ip link set $interface1 xdp obj xdp_pass.o
ip link set $interface1 mtu 9000 up
ip a a 10.0.0.1/24 dev $interface1
<Node B>
ip link set $interfac2 mtu 9000 up
ip a a 10.0.0.2/24 dev $interface2
ping 10.0.0.1 -s 65000
Following ping.py patch adds xdp-mb-pass case. so ping.py is going to be
able to reproduce this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Set hugetlb mmap base address aligned with pmd size
With ltp test case "testcases/bin/hugefork02", there is a dmesg error
report message such as:
kernel BUG at mm/hugetlb.c:5550!
Oops - BUG[#1]:
CPU: 0 UID: 0 PID: 1517 Comm: hugefork02 Not tainted 6.14.0-rc2+ #241
Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022
pc 90000000004eaf1c ra 9000000000485538 tp 900000010edbc000 sp 900000010edbf940
a0 900000010edbfb00 a1 9000000108d20280 a2 00007fffe9474000 a3 00007ffff3474000
a4 0000000000000000 a5 0000000000000003 a6 00000000003cadd3 a7 0000000000000000
t0 0000000001ffffff t1 0000000001474000 t2 900000010ecd7900 t3 00007fffe9474000
t4 00007fffe9474000 t5 0000000000000040 t6 900000010edbfb00 t7 0000000000000001
t8 0000000000000005 u0 90000000004849d0 s9 900000010edbfa00 s0 9000000108d20280
s1 00007fffe9474000 s2 0000000002000000 s3 9000000108d20280 s4 9000000002b38b10
s5 900000010edbfb00 s6 00007ffff3474000 s7 0000000000000406 s8 900000010edbfa08
ra: 9000000000485538 unmap_vmas+0x130/0x218
ERA: 90000000004eaf1c __unmap_hugepage_range+0x6f4/0x7d0
PRMD: 00000004 (PPLV0 +PIE -PWE)
EUEN: 00000007 (+FPE +SXE +ASXE -BTE)
ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7)
ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0)
PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
Process hugefork02 (pid: 1517, threadinfo=00000000a670eaf4, task=000000007a95fc64)
Call Trace:
[<90000000004eaf1c>] __unmap_hugepage_range+0x6f4/0x7d0
[<9000000000485534>] unmap_vmas+0x12c/0x218
[<9000000000494068>] exit_mmap+0xe0/0x308
[<900000000025fdc4>] mmput+0x74/0x180
[<900000000026a284>] do_exit+0x294/0x898
[<900000000026aa30>] do_group_exit+0x30/0x98
[<900000000027bed4>] get_signal+0x83c/0x868
[<90000000002457b4>] arch_do_signal_or_restart+0x54/0xfa0
[<90000000015795e8>] irqentry_exit_to_user_mode+0xb8/0x138
[<90000000002572d0>] tlb_do_page_fault_1+0x114/0x1b4
The problem is that base address allocated from hugetlbfs is not aligned
with pmd size. Here add a checking for hugetlbfs and align base address
with pmd size. After this patch the test case "testcases/bin/hugefork02"
passes to run.
This is similar to the commit 7f24cbc9c4d42db8a3c8484d1 ("mm/mmap: teach
generic_get_unmapped_area{_topdown} to handle hugetlb mappings"). |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix a deadlock when recovering state on a sillyrenamed file
If the file is sillyrenamed, and slated for delete on close, it is
possible for a server reboot to triggeer an open reclaim, with can again
race with the application call to close(). When that happens, the call
to put_nfs_open_context() can trigger a synchronous delegreturn call
which deadlocks because it is not marked as privileged.
Instead, ensure that the call to nfs4_inode_return_delegation_on_close()
catches the delegreturn, and schedules it asynchronously. |
| In the Linux kernel, the following vulnerability has been resolved:
net: enetc: avoid deadlock in enetc_tx_onestep_tstamp()
This lockdep splat says it better than I could:
================================
WARNING: inconsistent lock state
6.2.0-rc2-07010-ga9b9500ffaac-dirty #967 Not tainted
--------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
kworker/1:3/179 [HC0[0]:SC0[0]:HE1:SE1] takes:
ffff3ec4036ce098 (_xmit_ETHER#2){+.?.}-{3:3}, at: netif_freeze_queues+0x5c/0xc0
{IN-SOFTIRQ-W} state was registered at:
_raw_spin_lock+0x5c/0xc0
sch_direct_xmit+0x148/0x37c
__dev_queue_xmit+0x528/0x111c
ip6_finish_output2+0x5ec/0xb7c
ip6_finish_output+0x240/0x3f0
ip6_output+0x78/0x360
ndisc_send_skb+0x33c/0x85c
ndisc_send_rs+0x54/0x12c
addrconf_rs_timer+0x154/0x260
call_timer_fn+0xb8/0x3a0
__run_timers.part.0+0x214/0x26c
run_timer_softirq+0x3c/0x74
__do_softirq+0x14c/0x5d8
____do_softirq+0x10/0x20
call_on_irq_stack+0x2c/0x5c
do_softirq_own_stack+0x1c/0x30
__irq_exit_rcu+0x168/0x1a0
irq_exit_rcu+0x10/0x40
el1_interrupt+0x38/0x64
irq event stamp: 7825
hardirqs last enabled at (7825): [<ffffdf1f7200cae4>] exit_to_kernel_mode+0x34/0x130
hardirqs last disabled at (7823): [<ffffdf1f708105f0>] __do_softirq+0x550/0x5d8
softirqs last enabled at (7824): [<ffffdf1f7081050c>] __do_softirq+0x46c/0x5d8
softirqs last disabled at (7811): [<ffffdf1f708166e0>] ____do_softirq+0x10/0x20
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(_xmit_ETHER#2);
<Interrupt>
lock(_xmit_ETHER#2);
*** DEADLOCK ***
3 locks held by kworker/1:3/179:
#0: ffff3ec400004748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0
#1: ffff80000a0bbdc8 ((work_completion)(&priv->tx_onestep_tstamp)){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0
#2: ffff3ec4036cd438 (&dev->tx_global_lock){+.+.}-{3:3}, at: netif_tx_lock+0x1c/0x34
Workqueue: events enetc_tx_onestep_tstamp
Call trace:
print_usage_bug.part.0+0x208/0x22c
mark_lock+0x7f0/0x8b0
__lock_acquire+0x7c4/0x1ce0
lock_acquire.part.0+0xe0/0x220
lock_acquire+0x68/0x84
_raw_spin_lock+0x5c/0xc0
netif_freeze_queues+0x5c/0xc0
netif_tx_lock+0x24/0x34
enetc_tx_onestep_tstamp+0x20/0x100
process_one_work+0x28c/0x6c0
worker_thread+0x74/0x450
kthread+0x118/0x11c
but I'll say it anyway: the enetc_tx_onestep_tstamp() work item runs in
process context, therefore with softirqs enabled (i.o.w., it can be
interrupted by a softirq). If we hold the netif_tx_lock() when there is
an interrupt, and the NET_TX softirq then gets scheduled, this will take
the netif_tx_lock() a second time and deadlock the kernel.
To solve this, use netif_tx_lock_bh(), which blocks softirqs from
running. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix possible deadlock in rfcomm_sk_state_change
syzbot reports a possible deadlock in rfcomm_sk_state_change [1].
While rfcomm_sock_connect acquires the sk lock and waits for
the rfcomm lock, rfcomm_sock_release could have the rfcomm
lock and hit a deadlock for acquiring the sk lock.
Here's a simplified flow:
rfcomm_sock_connect:
lock_sock(sk)
rfcomm_dlc_open:
rfcomm_lock()
rfcomm_sock_release:
rfcomm_sock_shutdown:
rfcomm_lock()
__rfcomm_dlc_close:
rfcomm_k_state_change:
lock_sock(sk)
This patch drops the sk lock before calling rfcomm_dlc_open to
avoid the possible deadlock and holds sk's reference count to
prevent use-after-free after rfcomm_dlc_open completes. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: kprobe: Fixup kernel panic when probing an illegal position
The kernel would panic when probed for an illegal position. eg:
(CONFIG_RISCV_ISA_C=n)
echo 'p:hello kernel_clone+0x16 a0=%a0' >> kprobe_events
echo 1 > events/kprobes/hello/enable
cat trace
Kernel panic - not syncing: stack-protector: Kernel stack
is corrupted in: __do_sys_newfstatat+0xb8/0xb8
CPU: 0 PID: 111 Comm: sh Not tainted
6.2.0-rc1-00027-g2d398fe49a4d #490
Hardware name: riscv-virtio,qemu (DT)
Call Trace:
[<ffffffff80007268>] dump_backtrace+0x38/0x48
[<ffffffff80c5e83c>] show_stack+0x50/0x68
[<ffffffff80c6da28>] dump_stack_lvl+0x60/0x84
[<ffffffff80c6da6c>] dump_stack+0x20/0x30
[<ffffffff80c5ecf4>] panic+0x160/0x374
[<ffffffff80c6db94>] generic_handle_arch_irq+0x0/0xa8
[<ffffffff802deeb0>] sys_newstat+0x0/0x30
[<ffffffff800158c0>] sys_clone+0x20/0x30
[<ffffffff800039e8>] ret_from_syscall+0x0/0x4
---[ end Kernel panic - not syncing: stack-protector:
Kernel stack is corrupted in: __do_sys_newfstatat+0xb8/0xb8 ]---
That is because the kprobe's ebreak instruction broke the kernel's
original code. The user should guarantee the correction of the probe
position, but it couldn't make the kernel panic.
This patch adds arch_check_kprobe in arch_prepare_kprobe to prevent an
illegal position (Such as the middle of an instruction). |
| In the Linux kernel, the following vulnerability has been resolved:
VMCI: Use threaded irqs instead of tasklets
The vmci_dispatch_dgs() tasklet function calls vmci_read_data()
which uses wait_event() resulting in invalid sleep in an atomic
context (and therefore potentially in a deadlock).
Use threaded irqs to fix this issue and completely remove usage
of tasklets.
[ 20.264639] BUG: sleeping function called from invalid context at drivers/misc/vmw_vmci/vmci_guest.c:145
[ 20.264643] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 762, name: vmtoolsd
[ 20.264645] preempt_count: 101, expected: 0
[ 20.264646] RCU nest depth: 0, expected: 0
[ 20.264647] 1 lock held by vmtoolsd/762:
[ 20.264648] #0: ffff0000874ae440 (sk_lock-AF_VSOCK){+.+.}-{0:0}, at: vsock_connect+0x60/0x330 [vsock]
[ 20.264658] Preemption disabled at:
[ 20.264659] [<ffff80000151d7d8>] vmci_send_datagram+0x44/0xa0 [vmw_vmci]
[ 20.264665] CPU: 0 PID: 762 Comm: vmtoolsd Not tainted 5.19.0-0.rc8.20220727git39c3c396f813.60.fc37.aarch64 #1
[ 20.264667] Hardware name: VMware, Inc. VBSA/VBSA, BIOS VEFI 12/31/2020
[ 20.264668] Call trace:
[ 20.264669] dump_backtrace+0xc4/0x130
[ 20.264672] show_stack+0x24/0x80
[ 20.264673] dump_stack_lvl+0x88/0xb4
[ 20.264676] dump_stack+0x18/0x34
[ 20.264677] __might_resched+0x1a0/0x280
[ 20.264679] __might_sleep+0x58/0x90
[ 20.264681] vmci_read_data+0x74/0x120 [vmw_vmci]
[ 20.264683] vmci_dispatch_dgs+0x64/0x204 [vmw_vmci]
[ 20.264686] tasklet_action_common.constprop.0+0x13c/0x150
[ 20.264688] tasklet_action+0x40/0x50
[ 20.264689] __do_softirq+0x23c/0x6b4
[ 20.264690] __irq_exit_rcu+0x104/0x214
[ 20.264691] irq_exit_rcu+0x1c/0x50
[ 20.264693] el1_interrupt+0x38/0x6c
[ 20.264695] el1h_64_irq_handler+0x18/0x24
[ 20.264696] el1h_64_irq+0x68/0x6c
[ 20.264697] preempt_count_sub+0xa4/0xe0
[ 20.264698] _raw_spin_unlock_irqrestore+0x64/0xb0
[ 20.264701] vmci_send_datagram+0x7c/0xa0 [vmw_vmci]
[ 20.264703] vmci_datagram_dispatch+0x84/0x100 [vmw_vmci]
[ 20.264706] vmci_datagram_send+0x2c/0x40 [vmw_vmci]
[ 20.264709] vmci_transport_send_control_pkt+0xb8/0x120 [vmw_vsock_vmci_transport]
[ 20.264711] vmci_transport_connect+0x40/0x7c [vmw_vsock_vmci_transport]
[ 20.264713] vsock_connect+0x278/0x330 [vsock]
[ 20.264715] __sys_connect_file+0x8c/0xc0
[ 20.264718] __sys_connect+0x84/0xb4
[ 20.264720] __arm64_sys_connect+0x2c/0x3c
[ 20.264721] invoke_syscall+0x78/0x100
[ 20.264723] el0_svc_common.constprop.0+0x68/0x124
[ 20.264724] do_el0_svc+0x38/0x4c
[ 20.264725] el0_svc+0x60/0x180
[ 20.264726] el0t_64_sync_handler+0x11c/0x150
[ 20.264728] el0t_64_sync+0x190/0x194 |