| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm: fix uprobe pte be overwritten when expanding vma
Patch series "Fix uprobe pte be overwritten when expanding vma".
This patch (of 4):
We encountered a BUG alert triggered by Syzkaller as follows:
BUG: Bad rss-counter state mm:00000000b4a60fca type:MM_ANONPAGES val:1
And we can reproduce it with the following steps:
1. register uprobe on file at zero offset
2. mmap the file at zero offset:
addr1 = mmap(NULL, 2 * 4096, PROT_NONE, MAP_PRIVATE, fd, 0);
3. mremap part of vma1 to new vma2:
addr2 = mremap(addr1, 4096, 2 * 4096, MREMAP_MAYMOVE);
4. mremap back to orig addr1:
mremap(addr2, 4096, 4096, MREMAP_MAYMOVE | MREMAP_FIXED, addr1);
In step 3, the vma1 range [addr1, addr1 + 4096] will be remap to new vma2
with range [addr2, addr2 + 8192], and remap uprobe anon page from the vma1
to vma2, then unmap the vma1 range [addr1, addr1 + 4096].
In step 4, the vma2 range [addr2, addr2 + 4096] will be remap back to the
addr range [addr1, addr1 + 4096]. Since the addr range [addr1 + 4096,
addr1 + 8192] still maps the file, it will take vma_merge_new_range to
expand the range, and then do uprobe_mmap in vma_complete. Since the
merged vma pgoff is also zero offset, it will install uprobe anon page to
the merged vma. However, the upcomming move_page_tables step, which use
set_pte_at to remap the vma2 uprobe pte to the merged vma, will overwrite
the newly uprobe pte in the merged vma, and lead that pte to be orphan.
Since the uprobe pte will be remapped to the merged vma, we can remove the
unnecessary uprobe_mmap upon merged vma.
This problem was first found in linux-6.6.y and also exists in the
community syzkaller:
https://lore.kernel.org/all/000000000000ada39605a5e71711@google.com/T/ |
| A use-after-free vulnerability was discovered in Adobe Flash Player before 28.0.0.161. This vulnerability occurs due to a dangling pointer in the Primetime SDK related to media player handling of listener objects. A successful attack can lead to arbitrary code execution. This was exploited in the wild in January and February 2018. |
| Adobe Flash Player versions 29.0.0.171 and earlier have a Stack-based buffer overflow vulnerability. Successful exploitation could lead to arbitrary code execution in the context of the current user. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: remove tag set when second admin queue config fails
Commit 104d0e2f6222 ("nvme-fabrics: reset admin connection for secure
concatenation") modified nvme_tcp_setup_ctrl() to call
nvme_tcp_configure_admin_queue() twice. The first call prepares for
DH-CHAP negotitation, and the second call is required for secure
concatenation. However, this change triggered BUG KASAN slab-use-after-
free in blk_mq_queue_tag_busy_iter(). This BUG can be recreated by
repeating the blktests test case nvme/063 a few times [1].
When the BUG happens, nvme_tcp_create_ctrl() fails in the call chain
below:
nvme_tcp_create_ctrl()
nvme_tcp_alloc_ctrl() new=true ... Alloc nvme_tcp_ctrl and admin_tag_set
nvme_tcp_setup_ctrl() new=true
nvme_tcp_configure_admin_queue() new=true ... Succeed
nvme_alloc_admin_tag_set() ... Alloc the tag set for admin_tag_set
nvme_stop_keep_alive()
nvme_tcp_teardown_admin_queue() remove=false
nvme_tcp_configure_admin_queue() new=false
nvme_tcp_alloc_admin_queue() ... Fail, but do not call nvme_remove_admin_tag_set()
nvme_uninit_ctrl()
nvme_put_ctrl() ... Free up the nvme_tcp_ctrl and admin_tag_set
The first call of nvme_tcp_configure_admin_queue() succeeds with
new=true argument. The second call fails with new=false argument. This
second call does not call nvme_remove_admin_tag_set() on failure, due to
the new=false argument. Then the admin tag set is not removed. However,
nvme_tcp_create_ctrl() assumes that nvme_tcp_setup_ctrl() would call
nvme_remove_admin_tag_set(). Then it frees up struct nvme_tcp_ctrl which
has admin_tag_set field. Later on, the timeout handler accesses the
admin_tag_set field and causes the BUG KASAN slab-use-after-free.
To not leave the admin tag set, call nvme_remove_admin_tag_set() when
the second nvme_tcp_configure_admin_queue() call fails. Do not return
from nvme_tcp_setup_ctrl() on failure. Instead, jump to "destroy_admin"
go-to label to call nvme_tcp_teardown_admin_queue() which calls
nvme_remove_admin_tag_set(). |
| In the Linux kernel, the following vulnerability has been resolved:
can: kvaser_pciefd: refine error prone echo_skb_max handling logic
echo_skb_max should define the supported upper limit of echo_skb[]
allocated inside the netdevice's priv. The corresponding size value
provided by this driver to alloc_candev() is KVASER_PCIEFD_CAN_TX_MAX_COUNT
which is 17.
But later echo_skb_max is rounded up to the nearest power of two (for the
max case, that would be 32) and the tx/ack indices calculated further
during tx/rx may exceed the upper array boundary. Kasan reported this for
the ack case inside kvaser_pciefd_handle_ack_packet(), though the xmit
function has actually caught the same thing earlier.
BUG: KASAN: slab-out-of-bounds in kvaser_pciefd_handle_ack_packet+0x2d7/0x92a drivers/net/can/kvaser_pciefd.c:1528
Read of size 8 at addr ffff888105e4f078 by task swapper/4/0
CPU: 4 UID: 0 PID: 0 Comm: swapper/4 Not tainted 6.15.0 #12 PREEMPT(voluntary)
Call Trace:
<IRQ>
dump_stack_lvl lib/dump_stack.c:122
print_report mm/kasan/report.c:521
kasan_report mm/kasan/report.c:634
kvaser_pciefd_handle_ack_packet drivers/net/can/kvaser_pciefd.c:1528
kvaser_pciefd_read_packet drivers/net/can/kvaser_pciefd.c:1605
kvaser_pciefd_read_buffer drivers/net/can/kvaser_pciefd.c:1656
kvaser_pciefd_receive_irq drivers/net/can/kvaser_pciefd.c:1684
kvaser_pciefd_irq_handler drivers/net/can/kvaser_pciefd.c:1733
__handle_irq_event_percpu kernel/irq/handle.c:158
handle_irq_event kernel/irq/handle.c:210
handle_edge_irq kernel/irq/chip.c:833
__common_interrupt arch/x86/kernel/irq.c:296
common_interrupt arch/x86/kernel/irq.c:286
</IRQ>
Tx max count definitely matters for kvaser_pciefd_tx_avail(), but for seq
numbers' generation that's not the case - we're free to calculate them as
would be more convenient, not taking tx max count into account. The only
downside is that the size of echo_skb[] should correspond to the max seq
number (not tx max count), so in some situations a bit more memory would
be consumed than could be.
Thus make the size of the underlying echo_skb[] sufficient for the rounded
max tx value.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
media: imagination: fix a potential memory leak in e5010_probe()
Add video_device_release() to release the memory allocated by
video_device_alloc() if something goes wrong. |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Track decrypted status in vmbus_gpadl
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
In order to make sure callers of vmbus_establish_gpadl() and
vmbus_teardown_gpadl() don't return decrypted/shared pages to
allocators, add a field in struct vmbus_gpadl to keep track of the
decryption status of the buffers. This will allow the callers to
know if they should free or leak the pages. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc64/ftrace: fix clobbered r15 during livepatching
While r15 is clobbered always with PPC_FTRACE_OUT_OF_LINE, it is
not restored in livepatch sequence leading to not so obvious fails
like below:
BUG: Unable to handle kernel data access on write at 0xc0000000000f9078
Faulting instruction address: 0xc0000000018ff958
Oops: Kernel access of bad area, sig: 11 [#1]
...
NIP: c0000000018ff958 LR: c0000000018ff930 CTR: c0000000009c0790
REGS: c00000005f2e7790 TRAP: 0300 Tainted: G K (6.14.0+)
MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 2822880b XER: 20040000
CFAR: c0000000008addc0 DAR: c0000000000f9078 DSISR: 0a000000 IRQMASK: 1
GPR00: c0000000018f2584 c00000005f2e7a30 c00000000280a900 c000000017ffa488
GPR04: 0000000000000008 0000000000000000 c0000000018f24fc 000000000000000d
GPR08: fffffffffffe0000 000000000000000d 0000000000000000 0000000000008000
GPR12: c0000000009c0790 c000000017ffa480 c00000005f2e7c78 c0000000000f9070
GPR16: c00000005f2e7c90 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000000000000 c00000005f3efa80 c00000005f2e7c60 c00000005f2e7c88
GPR24: c00000005f2e7c60 0000000000000001 c0000000000f9078 0000000000000000
GPR28: 00007fff97960000 c000000017ffa480 0000000000000000 c0000000000f9078
...
Call Trace:
check_heap_object+0x34/0x390 (unreliable)
__mutex_unlock_slowpath.isra.0+0xe4/0x230
seq_read_iter+0x430/0xa90
proc_reg_read_iter+0xa4/0x200
vfs_read+0x41c/0x510
ksys_read+0xa4/0x190
system_call_exception+0x1d0/0x440
system_call_vectored_common+0x15c/0x2ec
Fix it by restoring r15 always. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: appletb-kbd: fix "appletb_backlight" backlight device reference counting
During appletb_kbd_probe, probe attempts to get the backlight device
by name. When this happens backlight_device_get_by_name looks for a
device in the backlight class which has name "appletb_backlight" and
upon finding a match it increments the reference count for the device
and returns it to the caller. However this reference is never released
leading to a reference leak.
Fix this by decrementing the backlight device reference count on removal
via put_device and on probe failure. |
| In the Linux kernel, the following vulnerability has been resolved:
bcachefs: Check for journal entries overruning end of sb clean section
Fix a missing bounds check in superblock validation.
Note that we don't yet have repair code for this case - repair code for
individual items is generally low priority, since the whole superblock
is checksummed, validated prior to write, and we have backups. |
| In the Linux kernel, the following vulnerability has been resolved:
configfs-tsm-report: Fix NULL dereference of tsm_ops
Unlike sysfs, the lifetime of configfs objects is controlled by
userspace. There is no mechanism for the kernel to find and delete all
created config-items. Instead, the configfs-tsm-report mechanism has an
expectation that tsm_unregister() can happen at any time and cause
established config-item access to start failing.
That expectation is not fully satisfied. While tsm_report_read(),
tsm_report_{is,is_bin}_visible(), and tsm_report_make_item() safely fail
if tsm_ops have been unregistered, tsm_report_privlevel_store()
tsm_report_provider_show() fail to check for ops registration. Add the
missing checks for tsm_ops having been removed.
Now, in supporting the ability for tsm_unregister() to always succeed,
it leaves the problem of what to do with lingering config-items. The
expectation is that the admin that arranges for the ->remove() (unbind)
of the ${tsm_arch}-guest driver is also responsible for deletion of all
open config-items. Until that deletion happens, ->probe() (reload /
bind) of the ${tsm_arch}-guest driver fails.
This allows for emergency shutdown / revocation of attestation
interfaces, and requires coordinated restart. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Restore context entry setup order for aliased devices
Commit 2031c469f816 ("iommu/vt-d: Add support for static identity domain")
changed the context entry setup during domain attachment from a
set-and-check policy to a clear-and-reset approach. This inadvertently
introduced a regression affecting PCI aliased devices behind PCIe-to-PCI
bridges.
Specifically, keyboard and touchpad stopped working on several Apple
Macbooks with below messages:
kernel: platform pxa2xx-spi.3: Adding to iommu group 20
kernel: input: Apple SPI Keyboard as
/devices/pci0000:00/0000:00:1e.3/pxa2xx-spi.3/spi_master/spi2/spi-APP000D:00/input/input0
kernel: DMAR: DRHD: handling fault status reg 3
kernel: DMAR: [DMA Read NO_PASID] Request device [00:1e.3] fault addr
0xffffa000 [fault reason 0x06] PTE Read access is not set
kernel: DMAR: DRHD: handling fault status reg 3
kernel: DMAR: [DMA Read NO_PASID] Request device [00:1e.3] fault addr
0xffffa000 [fault reason 0x06] PTE Read access is not set
kernel: applespi spi-APP000D:00: Error writing to device: 01 0e 00 00
kernel: DMAR: DRHD: handling fault status reg 3
kernel: DMAR: [DMA Read NO_PASID] Request device [00:1e.3] fault addr
0xffffa000 [fault reason 0x06] PTE Read access is not set
kernel: DMAR: DRHD: handling fault status reg 3
kernel: applespi spi-APP000D:00: Error writing to device: 01 0e 00 00
Fix this by restoring the previous context setup order. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_reject_ipv6: fix nf_reject_ip6_tcphdr_put()
syzbot reported that nf_reject_ip6_tcphdr_put() was possibly sending
garbage on the four reserved tcp bits (th->res1)
Use skb_put_zero() to clear the whole TCP header,
as done in nf_reject_ip_tcphdr_put()
BUG: KMSAN: uninit-value in nf_reject_ip6_tcphdr_put+0x688/0x6c0 net/ipv6/netfilter/nf_reject_ipv6.c:255
nf_reject_ip6_tcphdr_put+0x688/0x6c0 net/ipv6/netfilter/nf_reject_ipv6.c:255
nf_send_reset6+0xd84/0x15b0 net/ipv6/netfilter/nf_reject_ipv6.c:344
nft_reject_inet_eval+0x3c1/0x880 net/netfilter/nft_reject_inet.c:48
expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline]
nft_do_chain+0x438/0x22a0 net/netfilter/nf_tables_core.c:288
nft_do_chain_inet+0x41a/0x4f0 net/netfilter/nft_chain_filter.c:161
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf4/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
NF_HOOK include/linux/netfilter.h:312 [inline]
ipv6_rcv+0x29b/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5661 [inline]
__netif_receive_skb+0x1da/0xa00 net/core/dev.c:5775
process_backlog+0x4ad/0xa50 net/core/dev.c:6108
__napi_poll+0xe7/0x980 net/core/dev.c:6772
napi_poll net/core/dev.c:6841 [inline]
net_rx_action+0xa5a/0x19b0 net/core/dev.c:6963
handle_softirqs+0x1ce/0x800 kernel/softirq.c:554
__do_softirq+0x14/0x1a kernel/softirq.c:588
do_softirq+0x9a/0x100 kernel/softirq.c:455
__local_bh_enable_ip+0x9f/0xb0 kernel/softirq.c:382
local_bh_enable include/linux/bottom_half.h:33 [inline]
rcu_read_unlock_bh include/linux/rcupdate.h:908 [inline]
__dev_queue_xmit+0x2692/0x5610 net/core/dev.c:4450
dev_queue_xmit include/linux/netdevice.h:3105 [inline]
neigh_resolve_output+0x9ca/0xae0 net/core/neighbour.c:1565
neigh_output include/net/neighbour.h:542 [inline]
ip6_finish_output2+0x2347/0x2ba0 net/ipv6/ip6_output.c:141
__ip6_finish_output net/ipv6/ip6_output.c:215 [inline]
ip6_finish_output+0xbb8/0x14b0 net/ipv6/ip6_output.c:226
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip6_output+0x356/0x620 net/ipv6/ip6_output.c:247
dst_output include/net/dst.h:450 [inline]
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_xmit+0x1ba6/0x25d0 net/ipv6/ip6_output.c:366
inet6_csk_xmit+0x442/0x530 net/ipv6/inet6_connection_sock.c:135
__tcp_transmit_skb+0x3b07/0x4880 net/ipv4/tcp_output.c:1466
tcp_transmit_skb net/ipv4/tcp_output.c:1484 [inline]
tcp_connect+0x35b6/0x7130 net/ipv4/tcp_output.c:4143
tcp_v6_connect+0x1bcc/0x1e40 net/ipv6/tcp_ipv6.c:333
__inet_stream_connect+0x2ef/0x1730 net/ipv4/af_inet.c:679
inet_stream_connect+0x6a/0xd0 net/ipv4/af_inet.c:750
__sys_connect_file net/socket.c:2061 [inline]
__sys_connect+0x606/0x690 net/socket.c:2078
__do_sys_connect net/socket.c:2088 [inline]
__se_sys_connect net/socket.c:2085 [inline]
__x64_sys_connect+0x91/0xe0 net/socket.c:2085
x64_sys_call+0x27a5/0x3ba0 arch/x86/include/generated/asm/syscalls_64.h:43
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was stored to memory at:
nf_reject_ip6_tcphdr_put+0x60c/0x6c0 net/ipv6/netfilter/nf_reject_ipv6.c:249
nf_send_reset6+0xd84/0x15b0 net/ipv6/netfilter/nf_reject_ipv6.c:344
nft_reject_inet_eval+0x3c1/0x880 net/netfilter/nft_reject_inet.c:48
expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline]
nft_do_chain+0x438/0x22a0 net/netfilter/nf_tables_core.c:288
nft_do_chain_inet+0x41a/0x4f0 net/netfilter/nft_chain_filter.c:161
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf4/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
NF_HOOK include/linux/netfilter.h:312 [inline]
ipv6_rcv+0x29b/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (ftsteutates) Fix TOCTOU race in fts_read()
In the fts_read() function, when handling hwmon_pwm_auto_channels_temp,
the code accesses the shared variable data->fan_source[channel] twice
without holding any locks. It is first checked against
FTS_FAN_SOURCE_INVALID, and if the check passes, it is read again
when used as an argument to the BIT() macro.
This creates a Time-of-Check to Time-of-Use (TOCTOU) race condition.
Another thread executing fts_update_device() can modify the value of
data->fan_source[channel] between the check and its use. If the value
is changed to FTS_FAN_SOURCE_INVALID (0xff) during this window, the
BIT() macro will be called with a large shift value (BIT(255)).
A bit shift by a value greater than or equal to the type width is
undefined behavior and can lead to a crash or incorrect values being
returned to userspace.
Fix this by reading data->fan_source[channel] into a local variable
once, eliminating the race condition. Additionally, add a bounds check
to ensure the value is less than BITS_PER_LONG before passing it to
the BIT() macro, making the code more robust against undefined behavior.
This possible bug was found by an experimental static analysis tool
developed by our team. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: only dirty folios when data journaling regular files
fstest generic/388 occasionally reproduces a crash that looks as
follows:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
Call Trace:
<TASK>
ext4_block_zero_page_range+0x30c/0x380 [ext4]
ext4_truncate+0x436/0x440 [ext4]
ext4_process_orphan+0x5d/0x110 [ext4]
ext4_orphan_cleanup+0x124/0x4f0 [ext4]
ext4_fill_super+0x262d/0x3110 [ext4]
get_tree_bdev_flags+0x132/0x1d0
vfs_get_tree+0x26/0xd0
vfs_cmd_create+0x59/0xe0
__do_sys_fsconfig+0x4ed/0x6b0
do_syscall_64+0x82/0x170
...
This occurs when processing a symlink inode from the orphan list. The
partial block zeroing code in the truncate path calls
ext4_dirty_journalled_data() -> folio_mark_dirty(). The latter calls
mapping->a_ops->dirty_folio(), but symlink inodes are not assigned an
a_ops vector in ext4, hence the crash.
To avoid this problem, update the ext4_dirty_journalled_data() helper to
only mark the folio dirty on regular files (for which a_ops is
assigned). This also matches the journaling logic in the ext4_symlink()
creation path, where ext4_handle_dirty_metadata() is called directly. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix out of bounds punch offset
Punching a hole with a start offset that exceeds max_end is not
permitted and will result in a negative length in the
truncate_inode_partial_folio() function while truncating the page cache,
potentially leading to undesirable consequences.
A simple reproducer:
truncate -s 9895604649994 /mnt/foo
xfs_io -c "pwrite 8796093022208 4096" /mnt/foo
xfs_io -c "fpunch 8796093022213 25769803777" /mnt/foo
kernel BUG at include/linux/highmem.h:275!
Oops: invalid opcode: 0000 [#1] SMP PTI
CPU: 3 UID: 0 PID: 710 Comm: xfs_io Not tainted 6.15.0-rc3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:zero_user_segments.constprop.0+0xd7/0x110
RSP: 0018:ffffc90001cf3b38 EFLAGS: 00010287
RAX: 0000000000000005 RBX: ffffea0001485e40 RCX: 0000000000001000
RDX: 000000000040b000 RSI: 0000000000000005 RDI: 000000000040b000
RBP: 000000000040affb R08: ffff888000000000 R09: ffffea0000000000
R10: 0000000000000003 R11: 00000000fffc7fc5 R12: 0000000000000005
R13: 000000000040affb R14: ffffea0001485e40 R15: ffff888031cd3000
FS: 00007f4f63d0b780(0000) GS:ffff8880d337d000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000001ae0b038 CR3: 00000000536aa000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
truncate_inode_partial_folio+0x3dd/0x620
truncate_inode_pages_range+0x226/0x720
? bdev_getblk+0x52/0x3e0
? ext4_get_group_desc+0x78/0x150
? crc32c_arch+0xfd/0x180
? __ext4_get_inode_loc+0x18c/0x840
? ext4_inode_csum+0x117/0x160
? jbd2_journal_dirty_metadata+0x61/0x390
? __ext4_handle_dirty_metadata+0xa0/0x2b0
? kmem_cache_free+0x90/0x5a0
? jbd2_journal_stop+0x1d5/0x550
? __ext4_journal_stop+0x49/0x100
truncate_pagecache_range+0x50/0x80
ext4_truncate_page_cache_block_range+0x57/0x3a0
ext4_punch_hole+0x1fe/0x670
ext4_fallocate+0x792/0x17d0
? __count_memcg_events+0x175/0x2a0
vfs_fallocate+0x121/0x560
ksys_fallocate+0x51/0xc0
__x64_sys_fallocate+0x24/0x40
x64_sys_call+0x18d2/0x4170
do_syscall_64+0xa7/0x220
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Fix this by filtering out cases where the punching start offset exceeds
max_end. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: arfs: fix use-after-free when freeing @rx_cpu_rmap
The CI testing bots triggered the following splat:
[ 718.203054] BUG: KASAN: use-after-free in free_irq_cpu_rmap+0x53/0x80
[ 718.206349] Read of size 4 at addr ffff8881bd127e00 by task sh/20834
[ 718.212852] CPU: 28 PID: 20834 Comm: sh Kdump: loaded Tainted: G S W IOE 5.17.0-rc8_nextqueue-devqueue-02643-g23f3121aca93 #1
[ 718.219695] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0012.070720200218 07/07/2020
[ 718.223418] Call Trace:
[ 718.227139]
[ 718.230783] dump_stack_lvl+0x33/0x42
[ 718.234431] print_address_description.constprop.9+0x21/0x170
[ 718.238177] ? free_irq_cpu_rmap+0x53/0x80
[ 718.241885] ? free_irq_cpu_rmap+0x53/0x80
[ 718.245539] kasan_report.cold.18+0x7f/0x11b
[ 718.249197] ? free_irq_cpu_rmap+0x53/0x80
[ 718.252852] free_irq_cpu_rmap+0x53/0x80
[ 718.256471] ice_free_cpu_rx_rmap.part.11+0x37/0x50 [ice]
[ 718.260174] ice_remove_arfs+0x5f/0x70 [ice]
[ 718.263810] ice_rebuild_arfs+0x3b/0x70 [ice]
[ 718.267419] ice_rebuild+0x39c/0xb60 [ice]
[ 718.270974] ? asm_sysvec_apic_timer_interrupt+0x12/0x20
[ 718.274472] ? ice_init_phy_user_cfg+0x360/0x360 [ice]
[ 718.278033] ? delay_tsc+0x4a/0xb0
[ 718.281513] ? preempt_count_sub+0x14/0xc0
[ 718.284984] ? delay_tsc+0x8f/0xb0
[ 718.288463] ice_do_reset+0x92/0xf0 [ice]
[ 718.292014] ice_pci_err_resume+0x91/0xf0 [ice]
[ 718.295561] pci_reset_function+0x53/0x80
<...>
[ 718.393035] Allocated by task 690:
[ 718.433497] Freed by task 20834:
[ 718.495688] Last potentially related work creation:
[ 718.568966] The buggy address belongs to the object at ffff8881bd127e00
which belongs to the cache kmalloc-96 of size 96
[ 718.574085] The buggy address is located 0 bytes inside of
96-byte region [ffff8881bd127e00, ffff8881bd127e60)
[ 718.579265] The buggy address belongs to the page:
[ 718.598905] Memory state around the buggy address:
[ 718.601809] ffff8881bd127d00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
[ 718.604796] ffff8881bd127d80: 00 00 00 00 00 00 00 00 00 00 fc fc fc fc fc fc
[ 718.607794] >ffff8881bd127e00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
[ 718.610811] ^
[ 718.613819] ffff8881bd127e80: 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc fc
[ 718.617107] ffff8881bd127f00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
This is due to that free_irq_cpu_rmap() is always being called
*after* (devm_)free_irq() and thus it tries to work with IRQ descs
already freed. For example, on device reset the driver frees the
rmap right before allocating a new one (the splat above).
Make rmap creation and freeing function symmetrical with
{request,free}_irq() calls i.e. do that on ifup/ifdown instead
of device probe/remove/resume. These operations can be performed
independently from the actual device aRFS configuration.
Also, make sure ice_vsi_free_irq() clears IRQ affinity notifiers
only when aRFS is disabled -- otherwise, CPU rmap sets and clears
its own and they must not be touched manually. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix even more out of bound writes from debugfs
CVE-2021-42327 was fixed by:
commit f23750b5b3d98653b31d4469592935ef6364ad67
Author: Thelford Williams <tdwilliamsiv@gmail.com>
Date: Wed Oct 13 16:04:13 2021 -0400
drm/amdgpu: fix out of bounds write
but amdgpu_dm_debugfs.c contains more of the same issue so fix the
remaining ones.
v2:
* Add missing fix in dp_max_bpc_write (Harry Wentland) |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: avoid kernel BUG for encrypted inode with unaligned file size
The generic/397 test hits a BUG_ON for the case of encrypted inode with
unaligned file size (for example, 33K or 1K):
[ 877.737811] run fstests generic/397 at 2025-01-03 12:34:40
[ 877.875761] libceph: mon0 (2)127.0.0.1:40674 session established
[ 877.876130] libceph: client4614 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 877.991965] libceph: mon0 (2)127.0.0.1:40674 session established
[ 877.992334] libceph: client4617 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.017234] libceph: mon0 (2)127.0.0.1:40674 session established
[ 878.017594] libceph: client4620 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.031394] xfs_io (pid 18988) is setting deprecated v1 encryption policy; recommend upgrading to v2.
[ 878.054528] libceph: mon0 (2)127.0.0.1:40674 session established
[ 878.054892] libceph: client4623 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.070287] libceph: mon0 (2)127.0.0.1:40674 session established
[ 878.070704] libceph: client4626 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.264586] libceph: mon0 (2)127.0.0.1:40674 session established
[ 878.265258] libceph: client4629 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.374578] -----------[ cut here ]------------
[ 878.374586] kernel BUG at net/ceph/messenger.c:1070!
[ 878.375150] Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 878.378145] CPU: 2 UID: 0 PID: 4759 Comm: kworker/2:9 Not tainted 6.13.0-rc5+ #1
[ 878.378969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 878.380167] Workqueue: ceph-msgr ceph_con_workfn
[ 878.381639] RIP: 0010:ceph_msg_data_cursor_init+0x42/0x50
[ 878.382152] Code: 89 17 48 8b 46 70 55 48 89 47 08 c7 47 18 00 00 00 00 48 89 e5 e8 de cc ff ff 5d 31 c0 31 d2 31 f6 31 ff c3 cc cc cc cc 0f 0b <0f> 0b 0f 0b 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90
[ 878.383928] RSP: 0018:ffffb4ffc7cbbd28 EFLAGS: 00010287
[ 878.384447] RAX: ffffffff82bb9ac0 RBX: ffff981390c2f1f8 RCX: 0000000000000000
[ 878.385129] RDX: 0000000000009000 RSI: ffff981288232b58 RDI: ffff981390c2f378
[ 878.385839] RBP: ffffb4ffc7cbbe18 R08: 0000000000000000 R09: 0000000000000000
[ 878.386539] R10: 0000000000000000 R11: 0000000000000000 R12: ffff981390c2f030
[ 878.387203] R13: ffff981288232b58 R14: 0000000000000029 R15: 0000000000000001
[ 878.387877] FS: 0000000000000000(0000) GS:ffff9814b7900000(0000) knlGS:0000000000000000
[ 878.388663] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 878.389212] CR2: 00005e106a0554e0 CR3: 0000000112bf0001 CR4: 0000000000772ef0
[ 878.389921] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 878.390620] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 878.391307] PKRU: 55555554
[ 878.391567] Call Trace:
[ 878.391807] <TASK>
[ 878.392021] ? show_regs+0x71/0x90
[ 878.392391] ? die+0x38/0xa0
[ 878.392667] ? do_trap+0xdb/0x100
[ 878.392981] ? do_error_trap+0x75/0xb0
[ 878.393372] ? ceph_msg_data_cursor_init+0x42/0x50
[ 878.393842] ? exc_invalid_op+0x53/0x80
[ 878.394232] ? ceph_msg_data_cursor_init+0x42/0x50
[ 878.394694] ? asm_exc_invalid_op+0x1b/0x20
[ 878.395099] ? ceph_msg_data_cursor_init+0x42/0x50
[ 878.395583] ? ceph_con_v2_try_read+0xd16/0x2220
[ 878.396027] ? _raw_spin_unlock+0xe/0x40
[ 878.396428] ? raw_spin_rq_unlock+0x10/0x40
[ 878.396842] ? finish_task_switch.isra.0+0x97/0x310
[ 878.397338] ? __schedule+0x44b/0x16b0
[ 878.397738] ceph_con_workfn+0x326/0x750
[ 878.398121] process_one_work+0x188/0x3d0
[ 878.398522] ? __pfx_worker_thread+0x10/0x10
[ 878.398929] worker_thread+0x2b5/0x3c0
[ 878.399310] ? __pfx_worker_thread+0x10/0x10
[ 878.399727] kthread+0xe1/0x120
[ 878.400031] ? __pfx_kthread+0x10/0x10
[ 878.400431] ret_from_fork+0x43/0x70
[ 878.400771] ? __pfx_kthread+0x10/0x10
[ 878.401127] ret_from_fork_asm+0x1a/0x30
[ 878.401543] </TASK>
[ 878.401760] Modules l
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix error handling path in bnxt_init_chip()
WARN_ON() is triggered in __flush_work() if bnxt_init_chip() fails
because we call cancel_work_sync() on dim work that has not been
initialized.
WARNING: CPU: 37 PID: 5223 at kernel/workqueue.c:4201 __flush_work.isra.0+0x212/0x230
The driver relies on the BNXT_STATE_NAPI_DISABLED bit to check if dim
work has already been cancelled. But in the bnxt_open() path,
BNXT_STATE_NAPI_DISABLED is not set and this causes the error
path to think that it needs to cancel the uninitalized dim work.
Fix it by setting BNXT_STATE_NAPI_DISABLED during initialization.
The bit will be cleared when we enable NAPI and initialize dim work. |