| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| in OpenHarmony v5.0.2 and prior versions allow a local attacker cause DOS through out-of-bounds read. |
| A heap buffer overflow vulnerability was discovered in Perl.
Release branches 5.34, 5.36, 5.38 and 5.40 are affected, including development versions from 5.33.1 through 5.41.10.
When there are non-ASCII bytes in the left-hand-side of the `tr` operator, `S_do_trans_invmap` can overflow the destination pointer `d`.
$ perl -e '$_ = "\x{FF}" x 1000000; tr/\xFF/\x{100}/;'
Segmentation fault (core dumped)
It is believed that this vulnerability can enable Denial of Service and possibly Code Execution attacks on platforms that lack sufficient defenses. |
| A buffer overflow [CWE-121] in the TFTP client library of FortiOS before 6.4.7 and FortiOS 7.0.0 through 7.0.2, may allow an authenticated local attacker to achieve arbitrary code execution via specially crafted command line arguments. |
| Heap-based Buffer Overflow vulnerability in ABB Terra AC wallbox.This issue affects Terra AC wallbox: through 1.8.33. |
| Substance3D - Viewer versions 0.25.2 and earlier are affected by a Stack-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Pillow is a Python imaging library. In versions 11.2.0 to before 11.3.0, there is a heap buffer overflow when writing a sufficiently large (>64k encoded with default settings) image in the DDS format due to writing into a buffer without checking for available space. This only affects users who save untrusted data as a compressed DDS image. This issue has been patched in version 11.3.0. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: Don't overflow subsysnqn
nvmet_root_discovery_nqn_store treats the subsysnqn string like a fixed
size buffer, even though it is dynamically allocated to the size of the
string.
Create a new string with kstrndup instead of using the old buffer. |
| A vulnerability was found in markparticle WebServer up to 1.0. It has been declared as critical. Affected by this vulnerability is the function Buffer::HasWritten of the file code/buffer/buffer.cpp. The manipulation of the argument writePos_ leads to buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. |
| A security flaw has been discovered in Tenda AC15 15.03.05.18. Affected is an unknown function of the file /goform/saveAutoQos. Performing manipulation of the argument enable results in stack-based buffer overflow. Remote exploitation of the attack is possible. The exploit has been released to the public and may be exploited. |
| Santesoft Sante DICOM Viewer Pro contains a memory corruption vulnerability. A local attacker could exploit this issue to potentially disclose information and to execute arbitrary code on affected installations of Sante DICOM Viewer Pro. |
| A vulnerability has been identified in Simcenter Femap V2306 (All versions), Simcenter Femap V2401 (All versions), Simcenter Femap V2406 (All versions). The affected application is vulnerable to memory corruption while parsing specially crafted BDF files. This could allow an attacker to execute code in the context of the current process. |
| Meshtastic firmware is a device firmware for the Meshtastic project. The Meshtastic firmware does not check for packets claiming to be from the special broadcast address (0xFFFFFFFF) which could result in unexpected behavior and potential for DDoS attacks on the network. A malicious actor could craft a packet to be from that address which would result in an amplification of this one message into every node on the network sending multiple messages. Such an attack could result in degraded network performance for all users as the available bandwidth is consumed. This issue has been addressed in release version 2.5.6. All users are advised to upgrade. There are no known workarounds for this vulnerability. |
| Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution') vulnerability in Mozilla Convict.
This allows an attacker to inject attributes that are used in other components, or to override existing attributes with ones that have incompatible type, which may lead to a crash.
The main use case of Convict is for handling server-side
configurations written by the admins owning the servers, and not random
users. So it's unlikely that an admin would deliberately sabotage their
own server. Still, a situation can happen where an admin not
knowledgeable about JavaScript could be tricked by an attacker into
writing the malicious JavaScript code into some config files.
This issue affects Convict: before 6.2.4. |
| An issue was discovered in Django 5.2 before 5.2.3, 5.1 before 5.1.11, and 4.2 before 4.2.23. Internal HTTP response logging does not escape request.path, which allows remote attackers to potentially manipulate log output via crafted URLs. This may lead to log injection or forgery when logs are viewed in terminals or processed by external systems. |
| In rare scenarios, the cpca process on the Security Management Server / Domain Management Server may exit unexpectedly, creating a core dump file. When the cpca process is down, VPN and SIC connectivity issues may occur if the CRL is not present in the Security Gateway's CRL cache. |
| Synapse is an open source Matrix homeserver implementation. Lack of validation for device keys in Synapse before 1.138.3 and in Synapse 1.139.0 allow an attacker registered on the victim homeserver to degrade federation functionality, unpredictably breaking outbound federation to other homeservers. The issue is patched in Synapse 1.138.3, 1.138.4, 1.139.1, and 1.139.2. Note that even though 1.138.3 and 1.139.1 fix the vulnerability, they inadvertently introduced an unrelated regression. For this reason, the maintainers of Synapse recommend skipping these releases and upgrading straight to 1.138.4 and 1.139.2. |
| Denial of service condition in M-Files Server in versions before 24.4.13592.4 and after 23.11 (excluding 24.2 LTS) allows unauthenticated user to consume computing resources. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: dwmac-tegra: Read iommu stream id from device tree
Nvidia's Tegra MGBE controllers require the IOMMU "Stream ID" (SID) to be
written to the MGBE_WRAP_AXI_ASID0_CTRL register.
The current driver is hard coded to use MGBE0's SID for all controllers.
This causes softirq time outs and kernel panics when using controllers
other than MGBE0.
Example dmesg errors when an ethernet cable is connected to MGBE1:
[ 116.133290] tegra-mgbe 6910000.ethernet eth1: Link is Up - 1Gbps/Full - flow control rx/tx
[ 121.851283] tegra-mgbe 6910000.ethernet eth1: NETDEV WATCHDOG: CPU: 5: transmit queue 0 timed out 5690 ms
[ 121.851782] tegra-mgbe 6910000.ethernet eth1: Reset adapter.
[ 121.892464] tegra-mgbe 6910000.ethernet eth1: Register MEM_TYPE_PAGE_POOL RxQ-0
[ 121.905920] tegra-mgbe 6910000.ethernet eth1: PHY [stmmac-1:00] driver [Aquantia AQR113] (irq=171)
[ 121.907356] tegra-mgbe 6910000.ethernet eth1: Enabling Safety Features
[ 121.907578] tegra-mgbe 6910000.ethernet eth1: IEEE 1588-2008 Advanced Timestamp supported
[ 121.908399] tegra-mgbe 6910000.ethernet eth1: registered PTP clock
[ 121.908582] tegra-mgbe 6910000.ethernet eth1: configuring for phy/10gbase-r link mode
[ 125.961292] tegra-mgbe 6910000.ethernet eth1: Link is Up - 1Gbps/Full - flow control rx/tx
[ 181.921198] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
[ 181.921404] rcu: 7-....: (1 GPs behind) idle=540c/1/0x4000000000000002 softirq=1748/1749 fqs=2337
[ 181.921684] rcu: (detected by 4, t=6002 jiffies, g=1357, q=1254 ncpus=8)
[ 181.921878] Sending NMI from CPU 4 to CPUs 7:
[ 181.921886] NMI backtrace for cpu 7
[ 181.922131] CPU: 7 UID: 0 PID: 0 Comm: swapper/7 Kdump: loaded Not tainted 6.13.0-rc3+ #6
[ 181.922390] Hardware name: NVIDIA CTI Forge + Orin AGX/Jetson, BIOS 202402.1-Unknown 10/28/2024
[ 181.922658] pstate: 40400009 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 181.922847] pc : handle_softirqs+0x98/0x368
[ 181.922978] lr : __do_softirq+0x18/0x20
[ 181.923095] sp : ffff80008003bf50
[ 181.923189] x29: ffff80008003bf50 x28: 0000000000000008 x27: 0000000000000000
[ 181.923379] x26: ffffce78ea277000 x25: 0000000000000000 x24: 0000001c61befda0
[ 181.924486] x23: 0000000060400009 x22: ffffce78e99918bc x21: ffff80008018bd70
[ 181.925568] x20: ffffce78e8bb00d8 x19: ffff80008018bc20 x18: 0000000000000000
[ 181.926655] x17: ffff318ebe7d3000 x16: ffff800080038000 x15: 0000000000000000
[ 181.931455] x14: ffff000080816680 x13: ffff318ebe7d3000 x12: 000000003464d91d
[ 181.938628] x11: 0000000000000040 x10: ffff000080165a70 x9 : ffffce78e8bb0160
[ 181.945804] x8 : ffff8000827b3160 x7 : f9157b241586f343 x6 : eeb6502a01c81c74
[ 181.953068] x5 : a4acfcdd2e8096bb x4 : ffffce78ea277340 x3 : 00000000ffffd1e1
[ 181.960329] x2 : 0000000000000101 x1 : ffffce78ea277340 x0 : ffff318ebe7d3000
[ 181.967591] Call trace:
[ 181.970043] handle_softirqs+0x98/0x368 (P)
[ 181.974240] __do_softirq+0x18/0x20
[ 181.977743] ____do_softirq+0x14/0x28
[ 181.981415] call_on_irq_stack+0x24/0x30
[ 181.985180] do_softirq_own_stack+0x20/0x30
[ 181.989379] __irq_exit_rcu+0x114/0x140
[ 181.993142] irq_exit_rcu+0x14/0x28
[ 181.996816] el1_interrupt+0x44/0xb8
[ 182.000316] el1h_64_irq_handler+0x14/0x20
[ 182.004343] el1h_64_irq+0x80/0x88
[ 182.007755] cpuidle_enter_state+0xc4/0x4a8 (P)
[ 182.012305] cpuidle_enter+0x3c/0x58
[ 182.015980] cpuidle_idle_call+0x128/0x1c0
[ 182.020005] do_idle+0xe0/0xf0
[ 182.023155] cpu_startup_entry+0x3c/0x48
[ 182.026917] secondary_start_kernel+0xdc/0x120
[ 182.031379] __secondary_switched+0x74/0x78
[ 212.971162] rcu: INFO: rcu_preempt detected expedited stalls on CPUs/tasks: { 7-.... } 6103 jiffies s: 417 root: 0x80/.
[ 212.985935] rcu: blocking rcu_node structures (internal RCU debug):
[ 212.992758] Sending NMI from CPU 0 to CPUs 7:
[ 212.998539] NMI backtrace for cpu 7
[ 213.004304] CPU: 7 UID: 0 PI
---truncated--- |
| AutoGPT versions 0.3.4 and earlier are vulnerable to a Server-Side Template Injection (SSTI) that could lead to Remote Code Execution (RCE). The vulnerability arises from the improper handling of user-supplied format strings in the `AgentOutputBlock` implementation, where malicious input is passed to the Jinja2 templating engine without adequate security measures. Attackers can exploit this flaw to execute arbitrary commands on the host system. The issue is fixed in version 0.4.0. |
| Lunary-ai/lunary version git 105a3f6 is vulnerable to a Regular Expression Denial of Service (ReDoS) attack. The application allows users to upload their own regular expressions, which are then executed on the server side. Certain regular expressions can have exponential runtime complexity relative to the input size, leading to potential denial of service. An attacker can exploit this by submitting a specially crafted regular expression, causing the server to become unresponsive for an arbitrary length of time. |