| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| dr_flac, an audio decoder within the dr_libs toolset, contains an integer overflow vulnerability flaw due to trusting the totalPCMFrameCount field from FLAC metadata before calculating buffer size, allowing an attacker with a specially crafted file to perform DoS against programs using the tool. |
| The Nexter Extension – Site Enhancements Toolkit plugin for WordPress is vulnerable to PHP Object Injection in all versions up to, and including, 4.4.6 via deserialization of untrusted input in the 'nxt_unserialize_replace' function. This makes it possible for unauthenticated attackers to inject a PHP Object. No known POP chain is present in the vulnerable software, which means this vulnerability has no impact unless another plugin or theme containing a POP chain is installed on the site. If a POP chain is present via an additional plugin or theme installed on the target system, it may allow the attacker to perform actions like delete arbitrary files, retrieve sensitive data, or execute code depending on the POP chain present. |
| A security issue was discovered within the legacy ADI server component of Verve Asset Manager, caused by plaintext secrets stored in environment variables on the ADI server. This component has been retired and has been optional since the 1.36 release in 2024. |
| A security issue was discovered within the legacy Ansible playbook component of Verve Asset Manager, caused by plaintext secrets incorrectly stored when a playbook is running. This component has been retired and has been optional since the 1.36 release in 2024. |
| The NotificationX plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the 'regenerate' and 'reset' REST API endpoints in all versions up to, and including, 3.1.11. This makes it possible for authenticated attackers, with Contributor-level access and above, to reset analytics for any NotificationX campaign, regardless of ownership. |
| The Tutor LMS – eLearning and online course solution plugin for WordPress is vulnerable to unauthorized attachment deletion due to a missing capability check on the `delete_existing_user_photo` function in all versions up to, and including, 3.9.4. This makes it possible for authenticated attackers, with subscriber level access and above, to delete arbitrary attachments on the site. |
| IBM ApplinX 11.1 is vulnerable to cross-site request forgery which could allow an attacker to execute malicious and unauthorized actions transmitted from a user that the website trusts. |
| Stored Cross-Site Scripting (XSS) in Poultry Farm Management System v1.0 due to the lack of proper validation of user input by sending a POST request. The relationship between parameters and assigned identifiers is as follows:
'category' y 'product' parameters in '/farm/sell_product.php'. |
| An arbitrary file read vulnerability exists in the encapsulatedDoc functionality of MedDream PACS Premium 7.3.6.870. A specially crafted HTTP request can lead to an arbitrary file read. An attacker can send http request to trigger this vulnerability. |
| A Command Injection vulnerability in Zoom Node Multimedia Routers (MMRs) before version 5.2.1716.0 may allow a meeting participant to conduct remote code execution of the MMR via network access. |
| NVIDIA Nsight Systems contains a vulnerability in the gfx_hotspot recipe, where an attacker could cause an OS command injection by supplying a malicious string to the process_nsys_rep_cli.py script if the script is invoked manually. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, and information disclosure. |
| SummaryA command injection vulnerability (CWE-78) has been found to exist in the `wrangler pages deploy` command. The issue occurs because the `--commit-hash` parameter is passed directly to a shell command without proper validation or sanitization, allowing an attacker with control of `--commit-hash` to execute arbitrary commands on the system running Wrangler.
Root causeThe commitHash variable, derived from user input via the --commit-hash CLI argument, is interpolated directly into a shell command using template literals (e.g., execSync(`git show -s --format=%B ${commitHash}`)). Shell metacharacters are interpreted by the shell, enabling command execution.
ImpactThis vulnerability is generally hard to exploit, as it requires --commit-hash to be attacker controlled. The vulnerability primarily affects CI/CD environments where `wrangler pages deploy` is used in automated pipelines and the
--commit-hash parameter is populated from external, potentially untrusted sources. An attacker could exploit this to:
* Run any shell command.
* Exfiltrate environment variables.
* Compromise the CI runner to install backdoors or modify build artifacts.
Credits Disclosed responsibly by kny4hacker.
Mitigation
* Wrangler v4 users are requested to upgrade to Wrangler v4.59.1 or higher.
* Wrangler v3 users are requested to upgrade to Wrangler v3.114.17 or higher.
* Users on Wrangler v2 (EOL) should upgrade to a supported major version. |
| NVIDIA Merlin Transformers4Rec for all platforms contains a vulnerability where an attacker could cause code injection. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA Nsight Visual Studio for Windows contains a vulnerability in Nsight Monitor where an attacker can execute arbitrary code with the same privileges as the NVIDIA Nsight Visual Studio Edition Monitor application. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, data tampering, denial of service, and information disclosure. |
| NVIDIA Nsight Systems for Windows contains a vulnerability in the application’s DLL loading mechanism where an attacker could cause an uncontrolled search path element by exploiting insecure DLL search paths. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service and information disclosure. |
| NVIDIA Nsight Systems for Linux contains a vulnerability in the .run installer, where an attacker could cause an OS command injection by supplying a malicious string to the installation path. A successful exploit of this vulnerability might lead to escalation of privileges, code execution, data tampering, denial of service, and information disclosure. |
| A flaw was found in npm-serialize-javascript. The vulnerability occurs because the serialize-javascript module does not properly sanitize certain inputs, such as regex or other JavaScript object types, allowing an attacker to inject malicious code. This code could be executed when deserialized by a web browser, causing Cross-site scripting (XSS) attacks. This issue is critical in environments where serialized data is sent to web clients, potentially compromising the security of the website or web application using this package. |
| Denial-of-service condition in M-Files Server versions before 25.11.15392.1, before 25.2 LTS SR2 and before 25.8 LTS SR2 allows an authenticated user to cause the MFserver process to crash. |
| telnetd in GNU Inetutils through 2.7 allows remote authentication bypass via a "-f root" value for the USER environment variable. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix NULL deref when deactivating inactive aggregate in qfq_reset
`qfq_class->leaf_qdisc->q.qlen > 0` does not imply that the class
itself is active.
Two qfq_class objects may point to the same leaf_qdisc. This happens
when:
1. one QFQ qdisc is attached to the dev as the root qdisc, and
2. another QFQ qdisc is temporarily referenced (e.g., via qdisc_get()
/ qdisc_put()) and is pending to be destroyed, as in function
tc_new_tfilter.
When packets are enqueued through the root QFQ qdisc, the shared
leaf_qdisc->q.qlen increases. At the same time, the second QFQ
qdisc triggers qdisc_put and qdisc_destroy: the qdisc enters
qfq_reset() with its own q->q.qlen == 0, but its class's leaf
qdisc->q.qlen > 0. Therefore, the qfq_reset would wrongly deactivate
an inactive aggregate and trigger a null-deref in qfq_deactivate_agg:
[ 0.903172] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 0.903571] #PF: supervisor write access in kernel mode
[ 0.903860] #PF: error_code(0x0002) - not-present page
[ 0.904177] PGD 10299b067 P4D 10299b067 PUD 10299c067 PMD 0
[ 0.904502] Oops: Oops: 0002 [#1] SMP NOPTI
[ 0.904737] CPU: 0 UID: 0 PID: 135 Comm: exploit Not tainted 6.19.0-rc3+ #2 NONE
[ 0.905157] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.17.0-0-gb52ca86e094d-prebuilt.qemu.org 04/01/2014
[ 0.905754] RIP: 0010:qfq_deactivate_agg (include/linux/list.h:992 (discriminator 2) include/linux/list.h:1006 (discriminator 2) net/sched/sch_qfq.c:1367 (discriminator 2) net/sched/sch_qfq.c:1393 (discriminator 2))
[ 0.906046] Code: 0f 84 4d 01 00 00 48 89 70 18 8b 4b 10 48 c7 c2 ff ff ff ff 48 8b 78 08 48 d3 e2 48 21 f2 48 2b 13 48 8b 30 48 d3 ea 8b 4b 18 0
Code starting with the faulting instruction
===========================================
0: 0f 84 4d 01 00 00 je 0x153
6: 48 89 70 18 mov %rsi,0x18(%rax)
a: 8b 4b 10 mov 0x10(%rbx),%ecx
d: 48 c7 c2 ff ff ff ff mov $0xffffffffffffffff,%rdx
14: 48 8b 78 08 mov 0x8(%rax),%rdi
18: 48 d3 e2 shl %cl,%rdx
1b: 48 21 f2 and %rsi,%rdx
1e: 48 2b 13 sub (%rbx),%rdx
21: 48 8b 30 mov (%rax),%rsi
24: 48 d3 ea shr %cl,%rdx
27: 8b 4b 18 mov 0x18(%rbx),%ecx
...
[ 0.907095] RSP: 0018:ffffc900004a39a0 EFLAGS: 00010246
[ 0.907368] RAX: ffff8881043a0880 RBX: ffff888102953340 RCX: 0000000000000000
[ 0.907723] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 0.908100] RBP: ffff888102952180 R08: 0000000000000000 R09: 0000000000000000
[ 0.908451] R10: ffff8881043a0000 R11: 0000000000000000 R12: ffff888102952000
[ 0.908804] R13: ffff888102952180 R14: ffff8881043a0ad8 R15: ffff8881043a0880
[ 0.909179] FS: 000000002a1a0380(0000) GS:ffff888196d8d000(0000) knlGS:0000000000000000
[ 0.909572] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 0.909857] CR2: 0000000000000000 CR3: 0000000102993002 CR4: 0000000000772ef0
[ 0.910247] PKRU: 55555554
[ 0.910391] Call Trace:
[ 0.910527] <TASK>
[ 0.910638] qfq_reset_qdisc (net/sched/sch_qfq.c:357 net/sched/sch_qfq.c:1485)
[ 0.910826] qdisc_reset (include/linux/skbuff.h:2195 include/linux/skbuff.h:2501 include/linux/skbuff.h:3424 include/linux/skbuff.h:3430 net/sched/sch_generic.c:1036)
[ 0.911040] __qdisc_destroy (net/sched/sch_generic.c:1076)
[ 0.911236] tc_new_tfilter (net/sched/cls_api.c:2447)
[ 0.911447] rtnetlink_rcv_msg (net/core/rtnetlink.c:6958)
[ 0.911663] ? __pfx_rtnetlink_rcv_msg (net/core/rtnetlink.c:6861)
[ 0.911894] netlink_rcv_skb (net/netlink/af_netlink.c:2550)
[ 0.912100] netlink_unicast (net/netlink/af_netlink.c:1319 net/netlink/af_netlink.c:1344)
[ 0.912296] ? __alloc_skb (net/core/skbuff.c:706)
[ 0.912484] netlink_sendmsg (net/netlink/af
---truncated--- |